Nangui Abrogoua University, Côte D’ivoire
* Corresponding author
Nangui Abrogoua University, Côte D’ivoire
Nangui Abrogoua University, Côte D’ivoire
Nangui Abrogoua University, Côte D’ivoire
Nangui Abrogoua University, Côte D’ivoire

Article Main Content

The need for alternative energy sources rises steeply researches on residual agricultural biomass. Artisanal processing of agricultural products in the agri-food chains represent an essential pollution source in most emerging countries and get interest also in the energy sector. The present study final objective enables to convert wastewater from cassava processing in Attiéké, a traditional food largely consumed in West Africa, to energy in a cheapest way. To achieve the purpose, cassava processing wastewater pH and biodegradability was improved to perform an anaerobic digestion. Hence, two common fermentive and cost effective additives were used. Yeast (organic compound) and Sodium bicarbonate (inorganic compound) effect were compared at different amounts mix with the same quantity of cassava wastewater. The experiments were carried out in triplicate. The best pH result was obtained from 7g of Saccharomyces cerevisiae per liter of cassava wastewater which increased the pH from 3.83 to 4.57. While 40 g Sodium bicarbonate per liter of cassava waster, increased the pH to maximum 4.17. In anaerobic environment after 15 days, Sodium bicarbonate addition (5g, 10g, 20g and 40g) increase the carbon fraction thus the mixture biodegradability but not gas production. The best additive was found to be Saccharomyces cerevisiae in comparison to Sodium bicarbonate. Results should help when to choose a cost effective additive for cassava wastewater pretreatment prior anaerobic co-digestion of cassava wastewater.

References

  1. S. Dunstan, and E. Chuma, “Cassava cultivation in sub-Saharan Africa” in Hershey, C. (Ed.). Achieving sustainable cultivation of cassava. vol 1. London: Burleigh Dodds Science Publishing, 2017. https://doi.org/10.4324/9781351114264.
     Google Scholar
  2. A. Jarvis, J. Ramirez-Villegas, H. Campo, V. Beatriz, and C. Navarro-Racines, “Is Cassava the Answer to African Climate Change Adaptation?” Tropical Plant Biol. vol. 5, pp. 9–29, 2012. https://doi.org/10.1007/s12042-012-9096-7.
     Google Scholar
  3. FAO, FAOSTAT, 2013. http://faostat.fao.org/site/339/default.aspx8.
     Google Scholar
  4. FAO, «Perspectives de l'alimentation: rapport semestriel sur les marchés alimentaires mondiaux. Rapport semestriel, Rome, 41p., 2017 http://www.fao.org/3/a-I8080e.pdf.
     Google Scholar
  5. V. Okudoh, C. Trois, and T. Workneh, “The Potential of Cassava Biomass as a Feedstock for Sustainable Biogas Production in South Africa” Journal of Energy and Power Engineering, vol 8 pp. 836-843, 2014.
     Google Scholar
  6. A. Pandey, C. R. Soccol, P. Nigam, D. Brand, R. Mohan, and S. Roussos, “Biotechnological potential of coffee pulp and coffee husk for bioprocesses”. Biochemical Engineering Journal, vol 6, no.2, pp. 153-162, 2000.
     Google Scholar
  7. M. Carlsson, A. Lagerkvist, F. Morgan-Sagastume, “The effects of substrate pretreatment on anaerobic digestion systems: a review”. Waste Management, vol 32, pp. 1634-50, 2012.
     Google Scholar
  8. H. Carrère, C. Dumas, A. Battimelli, DJ. Batstone, JP. Delgenès, JP. Steyer et al., “Pretreatment methods to improve sludge anaerobic degradability: a review”, Journal of Hazardous Materials, vol 183, pp.1-15, 2010.
     Google Scholar
  9. G. Oboh, “Nutrient enrichment of cassava peels using a mixed culture of Saccharomyces cerevisiae and Lactobacillus spp. solid media fermentation”. Electronic Journal of Biotechnology, vol 9 no.1, pp. 46-49. 2006.
     Google Scholar
  10. N. T. Djeni, « Typologie de l’attiéké de trois zones de production de Côte d’Ivoire et analyse des propriétés des levains traditionnels utilisés pour sa préparation ». Thèse unique de Doctorat, Université Abobo-Adjamé. 2009.
     Google Scholar
  11. B. N’zué, G. P. Zohouri, C. Djédji, and O. Tahou, “Bien cultiver le manioc en Côte d’Ivoire ». Fiche technique, 4p. 2013 http://lorbouor.org/agrituto/manioc.pdf.
     Google Scholar
  12. Anader, 2017- Fiche technico-économique du manioc. http://www.anader.ci/fichetech/fiche%20technico-economique%20du%20manioc.pdf.
     Google Scholar
  13. Kpata-Konan N. E., Konan K. F., Kouame Y. F., Gnagne Theophile & Tano K. “Characterization of Waste from Attiéké Factory: Case of Azito Village (Abidjan, Côte d’Ivoire)”. European Scientific Journal, vol 12, no. 35, 2016. ISSN: 1857 – 7881 (Print) e - ISSN 1857- 7431-73.
     Google Scholar
  14. J. Ariño, “Integrative responses to high pH stress in S. cerevisiae,” OMICS A Journal of Integrative Biology, vol. 14, no. 5, pp. 517–523, 2010.
     Google Scholar
  15. M. Tcha-Thom, “Recherche d’une filière durable pour la méthanisation des déchets de fruits et d’abattoirs du Togo : Evaluation du potentiel agronomique des digestats sur les sols de la région de la Kara”. Géochimie. Université de Limoges; Université de Lomé (Togo), 2019.
     Google Scholar
  16. R. A. Torres, V. Sarria, W. Torres, P. Peringer, and C. Pulgarin, “Sonolysis of natural phenolic compounds in aqueous solutions: degradation pathways and biodegradability”, Water Research, vol. 37, pp. 3118–3124, 2003.
     Google Scholar
  17. M. Almutairi, “Method development for evaluating the effectiveness of hydrocarbons on BOD, UBOD and COD removal in oily wastewater”. Water Science and Technology, vol. 81, no.12, 2650-2663, 2020.
     Google Scholar
  18. United Nations Environment Program (UNEP). "Sodium Bicarbonate" (PDF). Archived from the original (PDF) on 2011-05-16. SIDS Initial Assessment Report for SIAM 15 (Boston, USA, 22-25 October 2002). http://www.chem.unep.ch/irptc/sids/oecdsids/Sodium bicarbonate.pdf.
     Google Scholar