COVID-19: A Critical Review on Viral Biochemistry, Environmental Transmission, Therapeutics and Safety Measures
Article Main Content
The outbreak of coronavirus disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is declared pandemic by World Health Organization (WHO) keeping in view its infection rate and toxicity level. The entire world is struggling hard to survive the prevailing health emergency. The authors realise the urgent need of contributing an overview of the present scenario to the researchers who are breathlessly trying to combat this pandemic situation. This review aimed at binding all the scattered data and research available till now on COVID-19 disease starting from its origin to transmission and spread through environmental factors till treatment and the safety measures that should be implemented. This article would possibly help the readers by providing an outlook of current scenario on various perspectives of COVID-19 disease at a single glance. The types, origin and toxicity caused are discussed in brief. The role of contaminated aerosols (viral-laden smoke from tobacco, cigarettes), wastewater, fomites, human and faecal matter are important in spreading the novel coronavirus in the environment. There is no specific treatment till date but clinical trials and diagnosis on several known drugs are on-going. The precaution and safety measures could hopefully reduce number of infections and mortality. The number of infected cases confirmed till 2 August 2020 was 17660523 with 680894 deaths in the world. We tried in this review article to summarize the scattered data available on biochemistry of SARS-CoV-2, environmental spread of virus and the safety measures to combat COVID-19 pandemic.
References
-
Tu, H., Tu, S., Gao, S., Shao, A. and Sheng, J. (2020) The epidemiological and clinical features of COVID-19 and lessons from this global infectious public health event. J. Infect. DOI: 10.1016/j.jinf.2020.04.011.
Google Scholar
1
-
Xu, J., Shi, P.-Y., Li, H. and Zhou, J. (2020) Broad Spectrum Antiviral Agent Niclosamide and Therapeutic Potential. ACS Infect. Dis. DOI: 10.1021/acsinfecdis.0c00052.
Google Scholar
2
-
Kang, S., Peng, W., Zhu, Y., Lu S., Zhou, M., Lin, W., Wu, W., Huang, S., Jiang, L., Luo, X., Deng, M. (2020) Recent progress in understanding 2019 novel coronavirus (SARS-CoV-2) associated with human respiratory disease: detection, mechanisms and treatment. Int. J. Antimicrob. Agents. DOI: 10.1016/j.ijantimicag.2020.105950.
Google Scholar
3
-
Chang, L., Yan, Y. and Wang, L. (2020) Coronavirus Disease 2019: Coronaviruses and Blood Safety. Transfus. Med. Rev. 34, 75-80.
Google Scholar
4
-
Singh, A., Shaikh, A., Singh, R. and Singh, A. K. (2020) COVID-19: From bench to bed side. Diabetes Metab. Syndr. 14, 277-281.
Google Scholar
5
-
Woo, P.C., Lau, S. K., Lam, C. S., Lau, C. C., Tsang, A. K., Lau, J. H., Bai, R., Teng, J. L., Tsang, C. C., Wang, M., Zheng, B. J., Chan, K. H., Yuen, K. Y. (2012) Discovery of seven novel Mammalian and avian coronaviruses in the genus deltacoronavirus supports bat coronaviruses as the gene source of alphacoronavirus and betacoronavirus and avian coronaviruses as the gene source of gammacoronavirus and deltacoronavirus. J. Virol. 86, 3995-4008.
Google Scholar
6
-
Rahimi, F. and Abadi, A. T. B. (2020) Tackling the COVID-19 Pandemic. Archives of Medical Research. DOI: 10.1016/j.arcmed.2020.04.012.
Google Scholar
7
-
Delgado-Roche, L. and Mesta F. (2020) Oxidative Stress as Key Player in Severe Acute Respiratory Syndrome (SARS-CoV) Infection. Arch. Med. Res. DOI: 10.1016/j.arcmed.2020.04.019.
Google Scholar
8
-
Wong, M. C., Cregeen, S. J. J., Ajami, N. J., Petrosino, J. F. (2020) Evidence of recombination in coronaviruses implicating pangolin origins of nCoV-2019. bioRxiv. DOI: 10.1101/2020.02.07.939207.
Google Scholar
9
-
Xiao, K., Zhai, J., Feng, Y., Zhou, N., Zhang, X., Zou, J. J., Li, N., Guo, Y., Li, X., Shen, X., Zhang, Z., Shu, F., Huang, W., Li, Y., Zhang, Z., Chen, R. A., Wu, Y. J., Peng, S. M., Huang, M., Xie, W. J., Cai, Q. H., Hou, F. H., Liu, Y., Chen, W., Xiao, L., Shen, Y. (2020) Isolation and Characterization of 2019-nCoV-like Coronavirus from Malayan Pangolins. bioRxiv. DOI:10.1101/2020.02.17.951335.
Google Scholar
10
-
Lam, T. T.Y., Shum, M. H. H., Zhu, H. C., Tong, Y. G., Ni, X. B., Liao, Y. S., Wei, W., Cheung, W. Y. M., Li, W. J., Li, L. F., Leung, G. M., Holmes, E. C., Hu, Y. L., Guan, Y. (2020) Identification of 2019-nCoV related coronaviruses in Malayan pangolins in southern China. bioRxiv. DOI: 10.1101/2020.02.13.945485.
Google Scholar
11
-
Tang, X., Wu, C., Li, X., Song, Y., Yao, X., Wu, X., Duan, Y., Zhang, H., Wang, Y., Qian, Z., Cui, J., Lu, J. (2020) On the origin and continuing evolution of SARS-CoV-2. Natl. Sci. Rev. 7, 1012-1023.
Google Scholar
12
-
Wang, Z., Yang, B., Li, Q., Wen, L. and Zhang, R. (2020) Clinical Features of 69 Cases with Coronavirus Disease 2019 in Wuhan, China. Clin. Infect. Dis. DOI: 10.1093/cid/ciaa272.
Google Scholar
13
-
Peeri, N. C., Shrestha, N., Rahman, M. S., Zaki, R., Tan, Z., Bibi, S., Baghbanzadeh, M., Aghamohammadi, N., Zhang, W., Haque, U. (2020) The SARS, MERS and novel coronavirus (COVID-19) epidemics, the newest and biggest global health threats: what lessons have we learned? Int J Epidemiol. DOI:10.1093/ije/dyaa033.
Google Scholar
14
-
Lu, R., Zhao, X., Li, J., Niu, P., Yang, B., Wu, H., Wang, W., Song, H., Huang, B., Zhu, N., Bi, Y., Ma, X., Zhan, F., Wang, L., Hu, T., Zhou, H., Hu, Z., Zhou, W., Zhao, L., Chen, J., Meng, Y., Wang, J., Lin, Y., Yuan, J., Xie, Z., Ma, J., Liu, W. J., Wang, D., Xu, W., Holmes, E. C., Gao, G. F., Wu, G., Chen, W., Shi, W., Tan, W. (2020) Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding. Lancet 395, 565–74.
Google Scholar
15
-
Zhou, P., Yang, X. –L., Wang, X. –G., Hu, B., Zhang, L., Zhang, W., Si, H. R., Zhu, Y., Li, B., Huang, C. L., Chen, H. D., Chen, J., Luo, Y., Guo, H., Jiang, R. D., Liu, M. Q., Chen, Y., Shen, X. R., Wang, X., Zheng, X. S., Zhao, K., Chen, Q. J., Deng, F., Liu, L. L., Yan, B., Zhan, F. X., Wang, Y. Y., Xiao, G., Shi, Z. L.(2020) Discovery of a novel coronavirus associated with the recent pneumonia outbreak in humans and its potential bat origin. bioRxiv. DOI: 10.1038/s41586-020-2012-7.
Google Scholar
16
-
Li, W., Shi, Z., Yu, M., Ren, W., Smith, C., Epstein J. H., Wang, H., Gary, C., Hu, Z., Zhang, H., Zhang, J., McEachern, J., Field, H., Daszak, P., Eaton, B. T., Zhang, S., Wang, L. F. (2005) Bats Are Natural Reservoirs of SARS-Like Coronaviruses. Science. 310, 676-679.
Google Scholar
17
-
Gralinski, L. E. and Menachery V. D. (2020) Return of the Coronavirus: 2019-nCoV. Viruses. DOI:10.3390/v12020135.
Google Scholar
18
-
Paraskevis, D., Kostakis, E. G., Magiorkinis, G., Panayiotakopoulos G., Sourvinos, G., Tsiodras S. (2020) Full-genome evolutionary analysis of the novel corona virus (2019-nCoV) rejects the hypothesis of emergence as a result of a recent recombination event. Infect. Genet. Evol. DOI: 10.1016/j.meegid.2020.104212.
Google Scholar
19
-
Masters, P. S., (2006) The molecular biology of coronaviruses. Adv Virus Res. 66, 193–292.
Google Scholar
20
-
Schoeman, D. and Fielding, B. C. (2019) Coronavirus envelope protein: current knowledge. Virol. J. 16, 1-22.
Google Scholar
21
-
Siu, Y., Teoh, K., Lo, J., Chan, C., Kien, F., Escriou, N., Tsao, S. W., Nicholls, J. M., Altmeyer, R., Peiris, J. S. M., Bruzzone, R., Nal, B. (2008) The M, E, and N structural proteins of the severe acute respiratory syndrome coronavirus are required for efficient assembly, trafficking, and release of virus-like particles. J. Virol.82, 11318–11330.
Google Scholar
22
-
Kirchdoerfer, R. N., Cottrell, C. A., Wang, N., Pallesen, J., Yassine, H. M., Turner, H. L., Corbett, K. S., Graham, B. S., McLellan, J. S., Ward, A. B. (2016) Pre-fusion structure of a human coronavirus spike protein. Nature. 531, 118–21.
Google Scholar
23
-
Fehr, A. R. and Perlman, S. (2015) Coronaviruses: An overview of their replication and pathogenesis. Coronaviruses 1282, 1–23.
Google Scholar
24
-
Millet, J. K. and Whittaker, G. R. (2015) Host cell proteases: Critical determinants of coronavirus tropism and pathogenesis. Virus Res. 202, 120-134.
Google Scholar
25
-
deHaan, C. A. andRottier, P. J. (2005) Molecular interactions in the assembly of coronaviruses. Adv. Virus Res. 64, 165–230.
Google Scholar
26
-
Boscarino, J. A., Logan, H. L., Lacny, J. J., and Gallagher, T. M. (2008) Envelope protein palmitoylations are crucial for murine coronavirus assembly. J. Virol.82, 2989–2999.
Google Scholar
27
-
Venkatagopalan, P., Daskalova, S. M., Lopez, L. A., Dolezal, K. A., Hogue, B. G. (2015) Coronavirus envelope (E) protein remains at the site of assembly. Virology. 478, 75–85.
Google Scholar
28
-
Snijder, E. J., Bredenbeek, P. J., Dobbe, J. C., Thiel, V., Ziebuhr, J., Poon, L. L. M., Guan, Y., Rozanov, M., Spaan, W. J. M., Gorbalenya, A. E. (2003) Unique and conserved features of genome and proteome of SARS-coronavirus, an early split-off from the coronavirus group 2 lineage. J. Mol. Biol. 331, 991–1004.
Google Scholar
29
-
Hussain S., Pan, J., Chen, Y., Yang, Y. and Xu, J., Peng, Y., Wu, Y., Li, Z., Zhu, Y., Tien, P., Guo, D. (2005) Identification of novel subgenomic RNAs and noncanonical transcription initiation signals of severe acute respiratory syndrome coronavirus. J. Virol. 79, 5288–5295.
Google Scholar
30
-
Chen, Y., Su, C., Ke, M., Jin, X., Zhang, Z., Wu, A., Sun, Y., Yang, Z., Tien, P., Ahola, T., Liang, Y., Liu, X., Guo, D. (2011) Biochemical and Structural Insights into the Mechanisms of SARS Coronavirus RNA Ribose 2’-O-Methylation by nsp16/nsp10 Protein Complex. PLOS Pathogens. e1002294. DOI: 10.1371/journal.ppat.1002294.
Google Scholar
31
-
Li, X., Geng, M., Peng, Y., Meng, L. and Lu, S. (2020) Molecular immune pathogenesis and diagnosis of COVID-19. J. Pharm. Anal. 10, 102-108.
Google Scholar
32
-
Knoops, K., Kikkert, M., Worm, S. H., Zevenhoven-Dobbe, J. C., van der Meer, Y., Koster, A. J., Mommaas, M., Snijder, E. J. (2008) SARS-coronavirus replication is supported by a reticulovesicular network of modified endoplasmic reticulum. PLOS Biol. 6, e226. DOI: 10.1271/journal.pbio.0060226.
Google Scholar
33
-
Chen, Y., Cai, H., Pan, J., Xiang, N., Tien, P., Ahola, T. and Guo, D. (2008) Functional screen reveals SARS coronavirus nonstructural protein nsp14 as a novel cap N7 methyltransferase. Proc. Natl. Acad. Sci. U.S.A 106, 3484-3489.
Google Scholar
34
-
Minskaia, E., Hertzig, T., Gorbalenya, A. E., Campanacci, V. R., Cambillau, C., Canard, B. and Ziebuhr, J. (2006) Discovery of an RNA virus 3_35_ exoribonuclease that is critically involved in coronavirus RNA synthesis. Proc. Natl. Acad. Sci. U.S.A. 1034, 5108–5113.
Google Scholar
35
-
Tang, J. W. (2009) The effect of environmental parameters on the survival of airborne infectious agents. J. R. Soc. Interface. 6 Suppl 6(Suppl 6), S737–S746. DOI: 10.1098/rsif.2009.0227.focus.
Google Scholar
36
-
Rabenau, H. F., Cinatl, J., Morgenstern, B., Bauer, G., Preiser, W. and Doerr, H. W. (2005) Stability and inactivation of SARS coronavirus. Med. Microbiol. Immun. 194, 1-6.
Google Scholar
37
-
Bamola, V. D., and Chaudhry, R. (2020) Recent Discovery and Development on SARS-CoV-2: A Review of Current Literature. DOI: 10.31219/osf.io/8gq3j.
Google Scholar
38
-
Geller, C., Varbanov, M. and Duval, R. E. (2012) Human coronaviruses: insights into environmental resistance and its influence on the development of new antiseptic strategies. Viruses. 4, 3044-3068.
Google Scholar
39
-
Mahabee-Gittens, M. E., Merianos, A. L., and Matt, G. E. (2020) Letter to the Editor Regarding: “An Imperative Need for Research on the Role of Environmental Factors in Transmission of Novel Coronavirus (COVID-19)” – Secondhand and Thirdhand Smoke as Potential Sources of COVID-19. Environ. Sci. Technol. 54, 5309-5310.
Google Scholar
40
-
Rathi, B., Rathi, B. J., Bhutada, R. S., Dasar, D., Khatana, R. (2020) Review on role of Dhoopan in the prevention of airborne infections (COVID-19). Int. J. Pharm. Sci. 11, 246-252.
Google Scholar
41
-
Zhou, F., Yu, T., Du, R et al. (2020) Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. Lancet 395, 1054-1062.
Google Scholar
42
-
Mahabee-Gittens, E. M., Merianos, A. L., Matt, G. E. (2017) Preliminary evidence that high levels of nicotine on children’s hands may contribute to overall tobacco smoke exposure. Tob. Control 27, 217-219.
Google Scholar
43
-
Cruz, A., Zeichner, S. (2020) COVID-19 in children: Initial characterisation of the pediatric disease. Pediatrics e20200834.
Google Scholar
44
-
Mulder, H. A., Patterson, J. L., Halquist, M. S., Kosmider, L., Turner, Mc. J. B., Poklis, J. L., Poklis, A., Peace, M. R. (2019) The Effect of Electronic Cigarette User Modifications and E-liquid Adulteration on the Particle Size Profile of an Aerosolized Product. Sci. Rep. DOI: 10.1038/s41598-019-463872.
Google Scholar
45
-
Bourouiba, L. (2020) Turbulent Gas Clouds and Respiratory Pathogen Emissions: Potential Implications for Reducing Transmission of COVID 19. J. Am. Med. Assoc. DOI: 10.1001/jama.2020.4756.
Google Scholar
46
-
van Doremalen, N., Bushmaker, T., Morris, D. H., Holbrook, M. G., Gamble, A., Williamson, B. N., Tamin, A., Harcourt, J. L., Thornburg, N. J., Gerber, S. I., Lloyd-Smith, J. O., de Wit, E., Munster, V. J. (2020) Aerosol and Surface Stability of SARS-CoV-2 as Compared with SARS-CoV-1. N. Engl. J. Med. 382, 1564-1567.
Google Scholar
47
-
Becquemin, M. H., Bertholon, J. F., Bentayeb, M., Attoui, M., Ledur, D., Roy, F., Roy, M., Annesi-Maesano, I., Dautzenberg, B. (2010) Thirdhand smoking: indoor measurements of concentration and sizes of cigarette smoke particles after resuspension. Tob. Control 19, 347−348.
Google Scholar
48
-
Qu, G., Li, X., Hu, L., and Jiang, G. (2020) An Imperative Need for Research on the Role of Environmental Factors in Transmission of Novel Coronavirus (COVID-19). Environ. Sci. Technol. 54, 3730−3732.
Google Scholar
49
-
Kitajima, M., Ahmed, W., Bibby, K., Carducci, A., Charles P., Gerba, K. A., Hamilton, E. H., Joan, B. R. (2020) SARS-CoV-2 in wastewater: State of the knowledge and research needs. Sci. Total Environ. DOI: 10.1016/j.scitotenv.2020.139076.
Google Scholar
50
-
Ahmed, W., Angel, N., Edson, J., Bibby, K., Bivins, A., Brien, J.W.O., Choi, P.M., Kitajima, M., Simpson, S.L., Li, J., Tscharke, B., Verhagen, R., Smith, W.J.M., Zaugg, J., Dierens, L., Hugenholtz, P., Thomas, K. V, Mueller, J. F. (2020) First confirmed detection of SARS-CoV-2 in untreated wastewater in Australia: A proof of concept for the wastewater surveillance of COVID-19in the community. Sci. Total Environ. DOI: 10.1016/j.scitotenv.2020.138764.
Google Scholar
51
-
Wu, F., Xiao, A., Zhang, J., Gu, X., Lee, W., Kauffman, K., Hanage, W., Matus, M., Ghaeli, N., Endo, N., Duvallet, C., Moniz, K., Erickson, T., Chai, P., Thompson, J., Alm, E. L. (2020) SARS-CoV-2 titers in wastewater are higher than expected from clinically confirmed cases. medRxiv. DOI: 10.1101/2020.04.05.20051540.
Google Scholar
52
-
Nemudryi, A., Nemudraia, A., Surya, K., Wiegand, T., Buyukyoruk, M., Wilkinson, R., Wiedenheft, B. (2020) Temporal detection and phylogenetic assessment of SARS-CoV-2 in municipal wastewater. medRxiv. DOI: 10.1101/2020.04.15.20066746.
Google Scholar
53
-
Wurtzer, S., Marechal, V., Mouchel, J., Moulin, L. (2020) Time course quantitative detection of SARSCoV- 2 in Parisian wastewaters correlates with COVID-19 confirmed cases. medRxiv. DOI: 10.1101/2020.04.12.20062679.
Google Scholar
54
-
Amirian, E. S. (2020) Potential Fecal Transmission of SARS-CoV-2: Current Evidence and Implications for Public Health. Int. J. Infect. Dis. 95, 363-370.
Google Scholar
55
-
Wang, W., Xu, Y., Gao, R., Lu, R., Han, K., Wu, G., Tan, W. (2020) Detection of SARS-CoV-2 in Different Types of Clinical Specimens. J. Am. Med. Assoc. 323, 1843-1844.
Google Scholar
56
-
Zhang, J., Wang, S., Xue, Y. (2020) Fecal specimen diagnosis 2019 novel coronavirus-infected pneumonia. J. Med. Virol. DOI: 10.1002/jmv.25742.
Google Scholar
57
-
Xiao, F., Tang, M., Zheng, X., Liu, Y., Li, X., Shan, H. (2020) Evidence for gastrointestinal infection of SARS-CoV-2. Gastroenterology, DOI: 10.1101/2020.02.17.20023721.
Google Scholar
58
-
Zhang, Y., Chen, C., Zhu, S., Shu, C., Wang, D., Song, J., Song, Y., Zhen, W., Feng, Z., Wu, G., Xu, J., Xu, W. (2020) Isolation of 2019-nCoV from a Stool Specimen of a Laboratory-Confirmed Case of the Coronavirus Disease 2019 (COVID-19). China CDC Weekly. DOI: 10.46234/ccdcw2020.033.
Google Scholar
59
-
Gu, J., Han, B., Wang, J. (2020). COVID-19: Gastrointestinal manifestations and potential fecal-oral transmission. Gastroenterology. DOI: 10.1053/j.gastro.2020.02.054.
Google Scholar
60
-
Song, Y., Liu, P., Shi, X. L., Chu, Y. L, Zhang, J., Xia, J., Gao, X. Z., Qu, T., Wang, M. Y. (2020) SARS-CoV-2induced diarrhoea as onset symptom in patient with COVID-19. Gut 69, 1143-1144, DOI: 10.1136/gutjnl-2020-320891.
Google Scholar
61
-
Lee, P. I., Hsueh, P. R. (2020) Emerging threats from zoonotic coronaviruses-from SARS and MERS to 2019-nCoV. J Microbiol. Immunol. Infect. 53, 365-367.
Google Scholar
62
-
Lescure, F. X., Bouadma, L., Nguyen, D., Parisey, M., Wicky, P. H., Behillil, S., Gaymard, A., Bouscambert-Duchamp, M., Donati, F., Le Hingrat, Q., Enouf, V., Houhou-Fidouh, N., Valette, M., Mailles, A., Lucet, J. C., Mentre, F., Duval, X., Descamps, D., Malvy, D., Timsit, J. F., Lina, B., van-der-Werf, S., Yazdanpanah, Y. (2020)Clinical and virological data of the first cases of COVID-19 in Europe: a case series. Lancet Infect. Dis. 2, 1–10.
Google Scholar
63
-
Pan, Y., Zhang, D., Yang, P., Poon, L.L.M., Wang, Q. (2020) Viral load of SARS-CoV-2 in clinical samples. Lancet Infect. Dis. 20, 411–412.
Google Scholar
64
-
Wolfel, R., Corman, V. M., Guggemos, W., Seilmaier, M., Zange, S., Mueller, M.A., Niemeyer, D., Vollmar, P., Rothe, C., Hoelscher, M., Bleicker, T., Bruenink, S., Schneider, J., Ehmann, R., Zwirglmaier, K., Drosten, C., Wendtner, C. (2020) Virological assessment of hospitalized cases of coronavirus disease 2019. Nature. DOI:10.1038/s41586-020-2196-x.
Google Scholar
65
-
Jiehao, C., Jing, X., Daojiong, L., Lei, X., Zhenghai, Q., Yuehua, Z., Hua, Z., Xiangshi, W., Yanling, G., Aimei, X., He, T., Hailing, C., Chuning, W., Jingjing, L., Jianshe, W., Mei, Z., Children, N., Women, H., Central, S., Zeng, M. (2020) A case series of children with 2019 novel coronavirus infection: clinical and epidemiological features. Clin. Infect. Dis. DOI: 10.1093/cid/ciaa198.
Google Scholar
66
-
Wu, Y., Guo, C., Tang, L., Hong, Z., Zhou, J., Dong, X., Yin, H., Xiao, Q., Tang, Y., Qu, X., Kuang, L., Fang, X., Mishra, N., Lu, J., Shan, H., Jiang, G., Huang, X. (2020) Prolonged presence of SARS CoV- 2 viral RNA in faecal samples. Lancet Gastroenterol. Hepatol. 1253, 20–21.
Google Scholar
67
-
Tang, A., Tong, Z. D., Wang, H. L., Dai, Y. X., Li, K. F., Liu, J. N., Wu, W. J., Yuan, C., Yu, M. L., Li, P., Yan, J. B. (2020) Detection of Novel Coronavirus by RT-PCRin Stool Specimen from Asymptomatic Child, China. Emerg. Infect. Dis. 26, 1337–1339.
Google Scholar
68
-
Kampf, G., Todt, D., Pfaender, S., Steinmann, E. (2020) Persistence of coronaviruses on inanimate surfaces and their inactivation with biocidal agents. J. Hosp. Infect. 104, 246−251.
Google Scholar
69
-
Chan, J. F. W., Yuan, S., Kok, K. H., To, K. K. W., Chu, H., Yang, J., Xing, F., Liu, J., Yip, C. C. Y., Poon, R. W. S., Tsoi, H. W., Lo, S. K. F., Chan, K. H., Poon, V. K. M., Chan, W. M., Ip, J. D., Cai, J. P., Cheng, V. C. C., Chen, H., Hui, C. K. M., Yuen, K. W.(2020) A familial cluster of pneu-monia associated with the 2019 novel coronavirus indicating person-to-person transmission: a study of a family cluster. Lancet 395, 514-523.
Google Scholar
70
-
Li, Q., Guan, X., Wu, P., Wang, X., Zhou, L., Tong, Y., Ren, R., Leung, K. S. M., Lau, E. H. Y., Wong, J. Y., Xing, X., Xiang, N., Wu, Y., Li, C., Chen, Q., Li, D., Liu, T., Zhao, J., Liu, M., Tu, W., Chen, C., Jin, L., Yang, R., Wang, Q., Zhou, S., Wang, R., Liu, H., Luo, Y., Liu, Y., Shao, G., Li, H., Tao, Z., Yang, Y., Deng, Z., Liu, B., Ma, Z., Zhang, Y., Shi, G., Lam, T. T. Y., Wu, J. T., Gao, G. F., Cowling, B. J., Yang, B., Leung, G. M., Feng, Z.(2020) Early transmission dynamics in Wuhan, China, of novel coronavirus–infected pneumonia, N. Engl. J. Med. NEJMoa2001316.
Google Scholar
71
-
Rothe, C., Schunk, M., Sothmann, P., Bretzel, G., Froeschl, G., Wallrauch, C., Zimmer, T., Thiel, V., Janke, C., Guggemos, W., Seilmaier, M., Drosten, C., Vollmar, P., Zwirglmaier, K., Zange, S., Wolfel, R., Hoelscher, M. (2020) Transmission of 2019-nCoV infection from an asymptomatic contact in Germany. N. Engl. J. Med. NEJMc2001468.
Google Scholar
72
-
Jean, S. S., Lee, P. I., Hsueh, P. R. (2020) Treatment options for COVID-19: The reality and challenges, J. Microbiol. Immunol. Infect., DOI: 10.1016/j.jmii.2020.03.034.
Google Scholar
73
-
Dwight, L., Sternberg, M. A., Strange, U., Laufer, S., Naujokat, C. (2020) Candidate drugs against SARS-CoV-2 and COVID-19. Pharmacol. Res. DOI: 10.1016/j.phrs.2020.104859.
Google Scholar
74
-
Caoa, Y., Denga, Q., Daib, S. (2020) Remdesivir for severe acute respiratory syndrome coronavirus 2 causing COVID-19: An evaluation of the evidence. Travel Med. Infect. Dis. DOI: 10.1016/j.tmaid.2020.101647.
Google Scholar
75
-
Wang, M., Cao, R., Zhang, L., Yang, X., Liu, J., Xu, M., Shi, Z., Hu, Z., Zhong, W., Xiao, G. (2020) Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus (2019-nCoV) in vitro, Cell Res. 30, 269-271.
Google Scholar
76
-
Grein, J. et al. (2020) Compassionate use of remdesivir for patients with severe COVID-19, N. Engl. J. Med, DOI: 10.1056/NEJMoa2007016.
Google Scholar
77
-
Xinhua Net. Favipiravir shows good clinical efficacy in treating COVID-19: http://www.xinhuanet.com/english/2020-03/17/c_138888226.htm.
Google Scholar
78
-
Cao, B. et al. (2020) A trial of lopinavir-ritonavir in adults hospitalized with severe COVID-19. N Engl J Med., DOI: 10.1056/NEJMoa 2001282.
Google Scholar
79
-
NCT04315948, ClinicalTrials.gov, (2020), March 20.
Google Scholar
80
-
Gao, J., Tian, Z., Yang, X. (2020) Breakthrough: Chloroquine phosphate has shown apparent efficacy in treatment of COVID-19 associated pneumonia in clinical studies. Biosci. Trends 14, 72-73.
Google Scholar
81
-
Stahlmann, R., Lode, H. (2020) Medication for COVID-19 – an overview of approaches currently under study. Dtsch Arztebl Int. 117, 213–219.
Google Scholar
82
-
Yao, X., Ye, F., Zhang, M., Cui, C., Huang, B., Nui, P., Liu, X., Zhao, E. D., Song, C., Zhan, S., Lu, R., Li, H., Tan, W., Liu, D. (2020) In vitro antiviral activity and projection of optimized dosing design of hydroxychloroquine for the treatment of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Clin. Infect. Dis. DOI: 10.1093/cid/ciaa237.
Google Scholar
83
-
Gautret, P., Lagier, J. C., Parola, P., Hoang, V. T., Meddeb, L., Mailhe, M., Doudier, B., Courjon, J., Giordanengo, V., Viera, V. E., Dupont, H. T., Honore, S., Colson, P., Chabriere, E., La Scola, B., Rolain, J. M., Brouqui, P., Roult, D. (2020) Hydroxychloroquine and azithromycin as a treatment of COVID-19: results of an open-label non-randomized clinical trial. Int. J. Antimicrob. Agents. DOI: 10.1016/j.ijantimicag.2020.105949.
Google Scholar
84
-
Chen, Z., Hu, J., Zhang, Z., Jiang, S., Han, S., Yan, D., Zhuang, R., Hu, B., Zhang, Z. (2020) Efficacy of hydroxychloroquine in patients with COVID-19: results of a randomized clinical trial. medRXiv. DOI: 10.1101/2020.03.22.20040758.
Google Scholar
85
-
Qamar, Md. T., Alqahtani, S. M., Alamri, M. A., Chen, L. L. (2020) Structural basis of SARS-CoV-2 3CLpro and anti-COVID-19 drug discovery from medicinal plants. J. Pharm. Anal. DOI: 10.1016/j.jpha.2020.03.009.
Google Scholar
86
-
Khandelwal, A., Sharma, T. (2020) Computational Screening of Phytochemicals from Medicinal plants as COVID-19 Inhibitors. ChemRxiv. Preprint, DOI: 10.26434/chemrxiv.12320273.v1.
Google Scholar
87
-
Rojas, M., Rodriguez, Y., Diana, M., Monsalve, Acosta-Ampudia, Y., Camacho, B., Gallo, J. E., Rojas-Villarraga, A., Ramírez-Santana, C., Juan, C., Coronado, D., Manrique, R., Mantilla, R. D., Shoenfeld, Y., Anaya, J. M. (2020) Convalescent plasma in Covid-19: Possible mechanisms of action. Autoimmun. Rev. DOI: 10.1016/j.autrev.2020.102554.
Google Scholar
88
-
Shen, C., Wang, Z., Zhao, F., Yang, Y., Li, J., Yuan, J., Wang, F., Li, D., Yang, M., Xing, L., Wei, J., Xiao, H., Yang, Y., Qu, J., Qing, L., Chen, L., Xu, Z., Peng, L., Li, Y., Zheng, H., Chen, F., Huang, K., Jiang, Y., Liu, D., Zhang, Z., Liu, Y., Liu, L. (2020) Treatment of 5 Critically Ill Patients With COVID-19 With Convalescent Plasma. J. Am. Med. Assoc. 323, 1582-1589.
Google Scholar
89