Central University of Jharkhand, India
* Corresponding author
Central University of Jharkhand, India
Central University of Jharkhand, India
University of Jharkhand

Article Main Content

The outbreak of coronavirus disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is declared pandemic by World Health Organization (WHO) keeping in view its infection rate and toxicity level. The entire world is struggling hard to survive the prevailing health emergency. The authors realise the urgent need of contributing an overview of the present scenario to the researchers who are breathlessly trying to combat this pandemic situation. This review aimed at binding all the scattered data and research available till now on COVID-19 disease starting from its origin to transmission and spread through environmental factors till treatment and the safety measures that should be implemented. This article would possibly help the readers by providing an outlook of current scenario on various perspectives of COVID-19 disease at a single glance. The types, origin and toxicity caused are discussed in brief. The role of contaminated aerosols (viral-laden smoke from tobacco, cigarettes), wastewater, fomites, human and faecal matter are important in spreading the novel coronavirus in the environment. There is no specific treatment till date but clinical trials and diagnosis on several known drugs are on-going. The precaution and safety measures could hopefully reduce number of infections and mortality. The number of infected cases confirmed till 2 August 2020 was 17660523 with 680894 deaths in the world. We tried in this review article to summarize the scattered data available on biochemistry of SARS-CoV-2, environmental spread of virus and the safety measures to combat COVID-19 pandemic.

References

  1. Tu, H., Tu, S., Gao, S., Shao, A. and Sheng, J. (2020) The epidemiological and clinical features of COVID-19 and lessons from this global infectious public health event. J. Infect. DOI: 10.1016/j.jinf.2020.04.011.
     Google Scholar
  2. Xu, J., Shi, P.-Y., Li, H. and Zhou, J. (2020) Broad Spectrum Antiviral Agent Niclosamide and Therapeutic Potential. ACS Infect. Dis. DOI: 10.1021/acsinfecdis.0c00052.
     Google Scholar
  3. Kang, S., Peng, W., Zhu, Y., Lu S., Zhou, M., Lin, W., Wu, W., Huang, S., Jiang, L., Luo, X., Deng, M. (2020) Recent progress in understanding 2019 novel coronavirus (SARS-CoV-2) associated with human respiratory disease: detection, mechanisms and treatment. Int. J. Antimicrob. Agents. DOI: 10.1016/j.ijantimicag.2020.105950.
     Google Scholar
  4. Chang, L., Yan, Y. and Wang, L. (2020) Coronavirus Disease 2019: Coronaviruses and Blood Safety. Transfus. Med. Rev. 34, 75-80.
     Google Scholar
  5. Singh, A., Shaikh, A., Singh, R. and Singh, A. K. (2020) COVID-19: From bench to bed side. Diabetes Metab. Syndr. 14, 277-281.
     Google Scholar
  6. Woo, P.C., Lau, S. K., Lam, C. S., Lau, C. C., Tsang, A. K., Lau, J. H., Bai, R., Teng, J. L., Tsang, C. C., Wang, M., Zheng, B. J., Chan, K. H., Yuen, K. Y. (2012) Discovery of seven novel Mammalian and avian coronaviruses in the genus deltacoronavirus supports bat coronaviruses as the gene source of alphacoronavirus and betacoronavirus and avian coronaviruses as the gene source of gammacoronavirus and deltacoronavirus. J. Virol. 86, 3995-4008.
     Google Scholar
  7. Rahimi, F. and Abadi, A. T. B. (2020) Tackling the COVID-19 Pandemic. Archives of Medical Research. DOI: 10.1016/j.arcmed.2020.04.012.
     Google Scholar
  8. Delgado-Roche, L. and Mesta F. (2020) Oxidative Stress as Key Player in Severe Acute Respiratory Syndrome (SARS-CoV) Infection. Arch. Med. Res. DOI: 10.1016/j.arcmed.2020.04.019.
     Google Scholar
  9. Wong, M. C., Cregeen, S. J. J., Ajami, N. J., Petrosino, J. F. (2020) Evidence of recombination in coronaviruses implicating pangolin origins of nCoV-2019. bioRxiv. DOI: 10.1101/2020.02.07.939207.
     Google Scholar
  10. Xiao, K., Zhai, J., Feng, Y., Zhou, N., Zhang, X., Zou, J. J., Li, N., Guo, Y., Li, X., Shen, X., Zhang, Z., Shu, F., Huang, W., Li, Y., Zhang, Z., Chen, R. A., Wu, Y. J., Peng, S. M., Huang, M., Xie, W. J., Cai, Q. H., Hou, F. H., Liu, Y., Chen, W., Xiao, L., Shen, Y. (2020) Isolation and Characterization of 2019-nCoV-like Coronavirus from Malayan Pangolins. bioRxiv. DOI:10.1101/2020.02.17.951335.
     Google Scholar
  11. Lam, T. T.Y., Shum, M. H. H., Zhu, H. C., Tong, Y. G., Ni, X. B., Liao, Y. S., Wei, W., Cheung, W. Y. M., Li, W. J., Li, L. F., Leung, G. M., Holmes, E. C., Hu, Y. L., Guan, Y. (2020) Identification of 2019-nCoV related coronaviruses in Malayan pangolins in southern China. bioRxiv. DOI: 10.1101/2020.02.13.945485.
     Google Scholar
  12. Tang, X., Wu, C., Li, X., Song, Y., Yao, X., Wu, X., Duan, Y., Zhang, H., Wang, Y., Qian, Z., Cui, J., Lu, J. (2020) On the origin and continuing evolution of SARS-CoV-2. Natl. Sci. Rev. 7, 1012-1023.
     Google Scholar
  13. Wang, Z., Yang, B., Li, Q., Wen, L. and Zhang, R. (2020) Clinical Features of 69 Cases with Coronavirus Disease 2019 in Wuhan, China. Clin. Infect. Dis. DOI: 10.1093/cid/ciaa272.
     Google Scholar
  14. Peeri, N. C., Shrestha, N., Rahman, M. S., Zaki, R., Tan, Z., Bibi, S., Baghbanzadeh, M., Aghamohammadi, N., Zhang, W., Haque, U. (2020) The SARS, MERS and novel coronavirus (COVID-19) epidemics, the newest and biggest global health threats: what lessons have we learned? Int J Epidemiol. DOI:10.1093/ije/dyaa033.
     Google Scholar
  15. Lu, R., Zhao, X., Li, J., Niu, P., Yang, B., Wu, H., Wang, W., Song, H., Huang, B., Zhu, N., Bi, Y., Ma, X., Zhan, F., Wang, L., Hu, T., Zhou, H., Hu, Z., Zhou, W., Zhao, L., Chen, J., Meng, Y., Wang, J., Lin, Y., Yuan, J., Xie, Z., Ma, J., Liu, W. J., Wang, D., Xu, W., Holmes, E. C., Gao, G. F., Wu, G., Chen, W., Shi, W., Tan, W. (2020) Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding. Lancet 395, 565–74.
     Google Scholar
  16. Zhou, P., Yang, X. –L., Wang, X. –G., Hu, B., Zhang, L., Zhang, W., Si, H. R., Zhu, Y., Li, B., Huang, C. L., Chen, H. D., Chen, J., Luo, Y., Guo, H., Jiang, R. D., Liu, M. Q., Chen, Y., Shen, X. R., Wang, X., Zheng, X. S., Zhao, K., Chen, Q. J., Deng, F., Liu, L. L., Yan, B., Zhan, F. X., Wang, Y. Y., Xiao, G., Shi, Z. L.(2020) Discovery of a novel coronavirus associated with the recent pneumonia outbreak in humans and its potential bat origin. bioRxiv. DOI: 10.1038/s41586-020-2012-7.
     Google Scholar
  17. Li, W., Shi, Z., Yu, M., Ren, W., Smith, C., Epstein J. H., Wang, H., Gary, C., Hu, Z., Zhang, H., Zhang, J., McEachern, J., Field, H., Daszak, P., Eaton, B. T., Zhang, S., Wang, L. F. (2005) Bats Are Natural Reservoirs of SARS-Like Coronaviruses. Science. 310, 676-679.
     Google Scholar
  18. Gralinski, L. E. and Menachery V. D. (2020) Return of the Coronavirus: 2019-nCoV. Viruses. DOI:10.3390/v12020135.
     Google Scholar
  19. Paraskevis, D., Kostakis, E. G., Magiorkinis, G., Panayiotakopoulos G., Sourvinos, G., Tsiodras S. (2020) Full-genome evolutionary analysis of the novel corona virus (2019-nCoV) rejects the hypothesis of emergence as a result of a recent recombination event. Infect. Genet. Evol. DOI: 10.1016/j.meegid.2020.104212.
     Google Scholar
  20. Masters, P. S., (2006) The molecular biology of coronaviruses. Adv Virus Res. 66, 193–292.
     Google Scholar
  21. Schoeman, D. and Fielding, B. C. (2019) Coronavirus envelope protein: current knowledge. Virol. J. 16, 1-22.
     Google Scholar
  22. Siu, Y., Teoh, K., Lo, J., Chan, C., Kien, F., Escriou, N., Tsao, S. W., Nicholls, J. M., Altmeyer, R., Peiris, J. S. M., Bruzzone, R., Nal, B. (2008) The M, E, and N structural proteins of the severe acute respiratory syndrome coronavirus are required for efficient assembly, trafficking, and release of virus-like particles. J. Virol.82, 11318–11330.
     Google Scholar
  23. Kirchdoerfer, R. N., Cottrell, C. A., Wang, N., Pallesen, J., Yassine, H. M., Turner, H. L., Corbett, K. S., Graham, B. S., McLellan, J. S., Ward, A. B. (2016) Pre-fusion structure of a human coronavirus spike protein. Nature. 531, 118–21.
     Google Scholar
  24. Fehr, A. R. and Perlman, S. (2015) Coronaviruses: An overview of their replication and pathogenesis. Coronaviruses 1282, 1–23.
     Google Scholar
  25. Millet, J. K. and Whittaker, G. R. (2015) Host cell proteases: Critical determinants of coronavirus tropism and pathogenesis. Virus Res. 202, 120-134.
     Google Scholar
  26. deHaan, C. A. andRottier, P. J. (2005) Molecular interactions in the assembly of coronaviruses. Adv. Virus Res. 64, 165–230.
     Google Scholar
  27. Boscarino, J. A., Logan, H. L., Lacny, J. J., and Gallagher, T. M. (2008) Envelope protein palmitoylations are crucial for murine coronavirus assembly. J. Virol.82, 2989–2999.
     Google Scholar
  28. Venkatagopalan, P., Daskalova, S. M., Lopez, L. A., Dolezal, K. A., Hogue, B. G. (2015) Coronavirus envelope (E) protein remains at the site of assembly. Virology. 478, 75–85.
     Google Scholar
  29. Snijder, E. J., Bredenbeek, P. J., Dobbe, J. C., Thiel, V., Ziebuhr, J., Poon, L. L. M., Guan, Y., Rozanov, M., Spaan, W. J. M., Gorbalenya, A. E. (2003) Unique and conserved features of genome and proteome of SARS-coronavirus, an early split-off from the coronavirus group 2 lineage. J. Mol. Biol. 331, 991–1004.
     Google Scholar
  30. Hussain S., Pan, J., Chen, Y., Yang, Y. and Xu, J., Peng, Y., Wu, Y., Li, Z., Zhu, Y., Tien, P., Guo, D. (2005) Identification of novel subgenomic RNAs and noncanonical transcription initiation signals of severe acute respiratory syndrome coronavirus. J. Virol. 79, 5288–5295.
     Google Scholar
  31. Chen, Y., Su, C., Ke, M., Jin, X., Zhang, Z., Wu, A., Sun, Y., Yang, Z., Tien, P., Ahola, T., Liang, Y., Liu, X., Guo, D. (2011) Biochemical and Structural Insights into the Mechanisms of SARS Coronavirus RNA Ribose 2’-O-Methylation by nsp16/nsp10 Protein Complex. PLOS Pathogens. e1002294. DOI: 10.1371/journal.ppat.1002294.
     Google Scholar
  32. Li, X., Geng, M., Peng, Y., Meng, L. and Lu, S. (2020) Molecular immune pathogenesis and diagnosis of COVID-19. J. Pharm. Anal. 10, 102-108.
     Google Scholar
  33. Knoops, K., Kikkert, M., Worm, S. H., Zevenhoven-Dobbe, J. C., van der Meer, Y., Koster, A. J., Mommaas, M., Snijder, E. J. (2008) SARS-coronavirus replication is supported by a reticulovesicular network of modified endoplasmic reticulum. PLOS Biol. 6, e226. DOI: 10.1271/journal.pbio.0060226.
     Google Scholar
  34. Chen, Y., Cai, H., Pan, J., Xiang, N., Tien, P., Ahola, T. and Guo, D. (2008) Functional screen reveals SARS coronavirus nonstructural protein nsp14 as a novel cap N7 methyltransferase. Proc. Natl. Acad. Sci. U.S.A 106, 3484-3489.
     Google Scholar
  35. Minskaia, E., Hertzig, T., Gorbalenya, A. E., Campanacci, V. R., Cambillau, C., Canard, B. and Ziebuhr, J. (2006) Discovery of an RNA virus 3_35_ exoribonuclease that is critically involved in coronavirus RNA synthesis. Proc. Natl. Acad. Sci. U.S.A. 1034, 5108–5113.
     Google Scholar
  36. Tang, J. W. (2009) The effect of environmental parameters on the survival of airborne infectious agents. J. R. Soc. Interface. 6 Suppl 6(Suppl 6), S737–S746. DOI: 10.1098/rsif.2009.0227.focus.
     Google Scholar
  37. Rabenau, H. F., Cinatl, J., Morgenstern, B., Bauer, G., Preiser, W. and Doerr, H. W. (2005) Stability and inactivation of SARS coronavirus. Med. Microbiol. Immun. 194, 1-6.
     Google Scholar
  38. Bamola, V. D., and Chaudhry, R. (2020) Recent Discovery and Development on SARS-CoV-2: A Review of Current Literature. DOI: 10.31219/osf.io/8gq3j.
     Google Scholar
  39. Geller, C., Varbanov, M. and Duval, R. E. (2012) Human coronaviruses: insights into environmental resistance and its influence on the development of new antiseptic strategies. Viruses. 4, 3044-3068.
     Google Scholar
  40. Mahabee-Gittens, M. E., Merianos, A. L., and Matt, G. E. (2020) Letter to the Editor Regarding: “An Imperative Need for Research on the Role of Environmental Factors in Transmission of Novel Coronavirus (COVID-19)” – Secondhand and Thirdhand Smoke as Potential Sources of COVID-19. Environ. Sci. Technol. 54, 5309-5310.
     Google Scholar
  41. Rathi, B., Rathi, B. J., Bhutada, R. S., Dasar, D., Khatana, R. (2020) Review on role of Dhoopan in the prevention of airborne infections (COVID-19). Int. J. Pharm. Sci. 11, 246-252.
     Google Scholar
  42. Zhou, F., Yu, T., Du, R et al. (2020) Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. Lancet 395, 1054-1062.
     Google Scholar
  43. Mahabee-Gittens, E. M., Merianos, A. L., Matt, G. E. (2017) Preliminary evidence that high levels of nicotine on children’s hands may contribute to overall tobacco smoke exposure. Tob. Control 27, 217-219.
     Google Scholar
  44. Cruz, A., Zeichner, S. (2020) COVID-19 in children: Initial characterisation of the pediatric disease. Pediatrics e20200834.
     Google Scholar
  45. Mulder, H. A., Patterson, J. L., Halquist, M. S., Kosmider, L., Turner, Mc. J. B., Poklis, J. L., Poklis, A., Peace, M. R. (2019) The Effect of Electronic Cigarette User Modifications and E-liquid Adulteration on the Particle Size Profile of an Aerosolized Product. Sci. Rep. DOI: 10.1038/s41598-019-463872.
     Google Scholar
  46. Bourouiba, L. (2020) Turbulent Gas Clouds and Respiratory Pathogen Emissions: Potential Implications for Reducing Transmission of COVID 19. J. Am. Med. Assoc. DOI: 10.1001/jama.2020.4756.
     Google Scholar
  47. van Doremalen, N., Bushmaker, T., Morris, D. H., Holbrook, M. G., Gamble, A., Williamson, B. N., Tamin, A., Harcourt, J. L., Thornburg, N. J., Gerber, S. I., Lloyd-Smith, J. O., de Wit, E., Munster, V. J. (2020) Aerosol and Surface Stability of SARS-CoV-2 as Compared with SARS-CoV-1. N. Engl. J. Med. 382, 1564-1567.
     Google Scholar
  48. Becquemin, M. H., Bertholon, J. F., Bentayeb, M., Attoui, M., Ledur, D., Roy, F., Roy, M., Annesi-Maesano, I., Dautzenberg, B. (2010) Thirdhand smoking: indoor measurements of concentration and sizes of cigarette smoke particles after resuspension. Tob. Control 19, 347−348.
     Google Scholar
  49. Qu, G., Li, X., Hu, L., and Jiang, G. (2020) An Imperative Need for Research on the Role of Environmental Factors in Transmission of Novel Coronavirus (COVID-19). Environ. Sci. Technol. 54, 3730−3732.
     Google Scholar
  50. Kitajima, M., Ahmed, W., Bibby, K., Carducci, A., Charles P., Gerba, K. A., Hamilton, E. H., Joan, B. R. (2020) SARS-CoV-2 in wastewater: State of the knowledge and research needs. Sci. Total Environ. DOI: 10.1016/j.scitotenv.2020.139076.
     Google Scholar
  51. Ahmed, W., Angel, N., Edson, J., Bibby, K., Bivins, A., Brien, J.W.O., Choi, P.M., Kitajima, M., Simpson, S.L., Li, J., Tscharke, B., Verhagen, R., Smith, W.J.M., Zaugg, J., Dierens, L., Hugenholtz, P., Thomas, K. V, Mueller, J. F. (2020) First confirmed detection of SARS-CoV-2 in untreated wastewater in Australia: A proof of concept for the wastewater surveillance of COVID-19in the community. Sci. Total Environ. DOI: 10.1016/j.scitotenv.2020.138764.
     Google Scholar
  52. Wu, F., Xiao, A., Zhang, J., Gu, X., Lee, W., Kauffman, K., Hanage, W., Matus, M., Ghaeli, N., Endo, N., Duvallet, C., Moniz, K., Erickson, T., Chai, P., Thompson, J., Alm, E. L. (2020) SARS-CoV-2 titers in wastewater are higher than expected from clinically confirmed cases. medRxiv. DOI: 10.1101/2020.04.05.20051540.
     Google Scholar
  53. Nemudryi, A., Nemudraia, A., Surya, K., Wiegand, T., Buyukyoruk, M., Wilkinson, R., Wiedenheft, B. (2020) Temporal detection and phylogenetic assessment of SARS-CoV-2 in municipal wastewater. medRxiv. DOI: 10.1101/2020.04.15.20066746.
     Google Scholar
  54. Wurtzer, S., Marechal, V., Mouchel, J., Moulin, L. (2020) Time course quantitative detection of SARSCoV- 2 in Parisian wastewaters correlates with COVID-19 confirmed cases. medRxiv. DOI: 10.1101/2020.04.12.20062679.
     Google Scholar
  55. Amirian, E. S. (2020) Potential Fecal Transmission of SARS-CoV-2: Current Evidence and Implications for Public Health. Int. J. Infect. Dis. 95, 363-370.
     Google Scholar
  56. Wang, W., Xu, Y., Gao, R., Lu, R., Han, K., Wu, G., Tan, W. (2020) Detection of SARS-CoV-2 in Different Types of Clinical Specimens. J. Am. Med. Assoc. 323, 1843-1844.
     Google Scholar
  57. Zhang, J., Wang, S., Xue, Y. (2020) Fecal specimen diagnosis 2019 novel coronavirus-infected pneumonia. J. Med. Virol. DOI: 10.1002/jmv.25742.
     Google Scholar
  58. Xiao, F., Tang, M., Zheng, X., Liu, Y., Li, X., Shan, H. (2020) Evidence for gastrointestinal infection of SARS-CoV-2. Gastroenterology, DOI: 10.1101/2020.02.17.20023721.
     Google Scholar
  59. Zhang, Y., Chen, C., Zhu, S., Shu, C., Wang, D., Song, J., Song, Y., Zhen, W., Feng, Z., Wu, G., Xu, J., Xu, W. (2020) Isolation of 2019-nCoV from a Stool Specimen of a Laboratory-Confirmed Case of the Coronavirus Disease 2019 (COVID-19). China CDC Weekly. DOI: 10.46234/ccdcw2020.033.
     Google Scholar
  60. Gu, J., Han, B., Wang, J. (2020). COVID-19: Gastrointestinal manifestations and potential fecal-oral transmission. Gastroenterology. DOI: 10.1053/j.gastro.2020.02.054.
     Google Scholar
  61. Song, Y., Liu, P., Shi, X. L., Chu, Y. L, Zhang, J., Xia, J., Gao, X. Z., Qu, T., Wang, M. Y. (2020) SARS-CoV-2induced diarrhoea as onset symptom in patient with COVID-19. Gut 69, 1143-1144, DOI: 10.1136/gutjnl-2020-320891.
     Google Scholar
  62. Lee, P. I., Hsueh, P. R. (2020) Emerging threats from zoonotic coronaviruses-from SARS and MERS to 2019-nCoV. J Microbiol. Immunol. Infect. 53, 365-367.
     Google Scholar
  63. Lescure, F. X., Bouadma, L., Nguyen, D., Parisey, M., Wicky, P. H., Behillil, S., Gaymard, A., Bouscambert-Duchamp, M., Donati, F., Le Hingrat, Q., Enouf, V., Houhou-Fidouh, N., Valette, M., Mailles, A., Lucet, J. C., Mentre, F., Duval, X., Descamps, D., Malvy, D., Timsit, J. F., Lina, B., van-der-Werf, S., Yazdanpanah, Y. (2020)Clinical and virological data of the first cases of COVID-19 in Europe: a case series. Lancet Infect. Dis. 2, 1–10.
     Google Scholar
  64. Pan, Y., Zhang, D., Yang, P., Poon, L.L.M., Wang, Q. (2020) Viral load of SARS-CoV-2 in clinical samples. Lancet Infect. Dis. 20, 411–412.
     Google Scholar
  65. Wolfel, R., Corman, V. M., Guggemos, W., Seilmaier, M., Zange, S., Mueller, M.A., Niemeyer, D., Vollmar, P., Rothe, C., Hoelscher, M., Bleicker, T., Bruenink, S., Schneider, J., Ehmann, R., Zwirglmaier, K., Drosten, C., Wendtner, C. (2020) Virological assessment of hospitalized cases of coronavirus disease 2019. Nature. DOI:10.1038/s41586-020-2196-x.
     Google Scholar
  66. Jiehao, C., Jing, X., Daojiong, L., Lei, X., Zhenghai, Q., Yuehua, Z., Hua, Z., Xiangshi, W., Yanling, G., Aimei, X., He, T., Hailing, C., Chuning, W., Jingjing, L., Jianshe, W., Mei, Z., Children, N., Women, H., Central, S., Zeng, M. (2020) A case series of children with 2019 novel coronavirus infection: clinical and epidemiological features. Clin. Infect. Dis. DOI: 10.1093/cid/ciaa198.
     Google Scholar
  67. Wu, Y., Guo, C., Tang, L., Hong, Z., Zhou, J., Dong, X., Yin, H., Xiao, Q., Tang, Y., Qu, X., Kuang, L., Fang, X., Mishra, N., Lu, J., Shan, H., Jiang, G., Huang, X. (2020) Prolonged presence of SARS CoV- 2 viral RNA in faecal samples. Lancet Gastroenterol. Hepatol. 1253, 20–21.
     Google Scholar
  68. Tang, A., Tong, Z. D., Wang, H. L., Dai, Y. X., Li, K. F., Liu, J. N., Wu, W. J., Yuan, C., Yu, M. L., Li, P., Yan, J. B. (2020) Detection of Novel Coronavirus by RT-PCRin Stool Specimen from Asymptomatic Child, China. Emerg. Infect. Dis. 26, 1337–1339.
     Google Scholar
  69. Kampf, G., Todt, D., Pfaender, S., Steinmann, E. (2020) Persistence of coronaviruses on inanimate surfaces and their inactivation with biocidal agents. J. Hosp. Infect. 104, 246−251.
     Google Scholar
  70. Chan, J. F. W., Yuan, S., Kok, K. H., To, K. K. W., Chu, H., Yang, J., Xing, F., Liu, J., Yip, C. C. Y., Poon, R. W. S., Tsoi, H. W., Lo, S. K. F., Chan, K. H., Poon, V. K. M., Chan, W. M., Ip, J. D., Cai, J. P., Cheng, V. C. C., Chen, H., Hui, C. K. M., Yuen, K. W.(2020) A familial cluster of pneu-monia associated with the 2019 novel coronavirus indicating person-to-person transmission: a study of a family cluster. Lancet 395, 514-523.
     Google Scholar
  71. Li, Q., Guan, X., Wu, P., Wang, X., Zhou, L., Tong, Y., Ren, R., Leung, K. S. M., Lau, E. H. Y., Wong, J. Y., Xing, X., Xiang, N., Wu, Y., Li, C., Chen, Q., Li, D., Liu, T., Zhao, J., Liu, M., Tu, W., Chen, C., Jin, L., Yang, R., Wang, Q., Zhou, S., Wang, R., Liu, H., Luo, Y., Liu, Y., Shao, G., Li, H., Tao, Z., Yang, Y., Deng, Z., Liu, B., Ma, Z., Zhang, Y., Shi, G., Lam, T. T. Y., Wu, J. T., Gao, G. F., Cowling, B. J., Yang, B., Leung, G. M., Feng, Z.(2020) Early transmission dynamics in Wuhan, China, of novel coronavirus–infected pneumonia, N. Engl. J. Med. NEJMoa2001316.
     Google Scholar
  72. Rothe, C., Schunk, M., Sothmann, P., Bretzel, G., Froeschl, G., Wallrauch, C., Zimmer, T., Thiel, V., Janke, C., Guggemos, W., Seilmaier, M., Drosten, C., Vollmar, P., Zwirglmaier, K., Zange, S., Wolfel, R., Hoelscher, M. (2020) Transmission of 2019-nCoV infection from an asymptomatic contact in Germany. N. Engl. J. Med. NEJMc2001468.
     Google Scholar
  73. Jean, S. S., Lee, P. I., Hsueh, P. R. (2020) Treatment options for COVID-19: The reality and challenges, J. Microbiol. Immunol. Infect., DOI: 10.1016/j.jmii.2020.03.034.
     Google Scholar
  74. Dwight, L., Sternberg, M. A., Strange, U., Laufer, S., Naujokat, C. (2020) Candidate drugs against SARS-CoV-2 and COVID-19. Pharmacol. Res. DOI: 10.1016/j.phrs.2020.104859.
     Google Scholar
  75. Caoa, Y., Denga, Q., Daib, S. (2020) Remdesivir for severe acute respiratory syndrome coronavirus 2 causing COVID-19: An evaluation of the evidence. Travel Med. Infect. Dis. DOI: 10.1016/j.tmaid.2020.101647.
     Google Scholar
  76. Wang, M., Cao, R., Zhang, L., Yang, X., Liu, J., Xu, M., Shi, Z., Hu, Z., Zhong, W., Xiao, G. (2020) Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus (2019-nCoV) in vitro, Cell Res. 30, 269-271.
     Google Scholar
  77. Grein, J. et al. (2020) Compassionate use of remdesivir for patients with severe COVID-19, N. Engl. J. Med, DOI: 10.1056/NEJMoa2007016.
     Google Scholar
  78. Xinhua Net. Favipiravir shows good clinical efficacy in treating COVID-19: http://www.xinhuanet.com/english/2020-03/17/c_138888226.htm.
     Google Scholar
  79. Cao, B. et al. (2020) A trial of lopinavir-ritonavir in adults hospitalized with severe COVID-19. N Engl J Med., DOI: 10.1056/NEJMoa 2001282.
     Google Scholar
  80. NCT04315948, ClinicalTrials.gov, (2020), March 20.
     Google Scholar
  81. Gao, J., Tian, Z., Yang, X. (2020) Breakthrough: Chloroquine phosphate has shown apparent efficacy in treatment of COVID-19 associated pneumonia in clinical studies. Biosci. Trends 14, 72-73.
     Google Scholar
  82. Stahlmann, R., Lode, H. (2020) Medication for COVID-19 – an overview of approaches currently under study. Dtsch Arztebl Int. 117, 213–219.
     Google Scholar
  83. Yao, X., Ye, F., Zhang, M., Cui, C., Huang, B., Nui, P., Liu, X., Zhao, E. D., Song, C., Zhan, S., Lu, R., Li, H., Tan, W., Liu, D. (2020) In vitro antiviral activity and projection of optimized dosing design of hydroxychloroquine for the treatment of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Clin. Infect. Dis. DOI: 10.1093/cid/ciaa237.
     Google Scholar
  84. Gautret, P., Lagier, J. C., Parola, P., Hoang, V. T., Meddeb, L., Mailhe, M., Doudier, B., Courjon, J., Giordanengo, V., Viera, V. E., Dupont, H. T., Honore, S., Colson, P., Chabriere, E., La Scola, B., Rolain, J. M., Brouqui, P., Roult, D. (2020) Hydroxychloroquine and azithromycin as a treatment of COVID-19: results of an open-label non-randomized clinical trial. Int. J. Antimicrob. Agents. DOI: 10.1016/j.ijantimicag.2020.105949.
     Google Scholar
  85. Chen, Z., Hu, J., Zhang, Z., Jiang, S., Han, S., Yan, D., Zhuang, R., Hu, B., Zhang, Z. (2020) Efficacy of hydroxychloroquine in patients with COVID-19: results of a randomized clinical trial. medRXiv. DOI: 10.1101/2020.03.22.20040758.
     Google Scholar
  86. Qamar, Md. T., Alqahtani, S. M., Alamri, M. A., Chen, L. L. (2020) Structural basis of SARS-CoV-2 3CLpro and anti-COVID-19 drug discovery from medicinal plants. J. Pharm. Anal. DOI: 10.1016/j.jpha.2020.03.009.
     Google Scholar
  87. Khandelwal, A., Sharma, T. (2020) Computational Screening of Phytochemicals from Medicinal plants as COVID-19 Inhibitors. ChemRxiv. Preprint, DOI: 10.26434/chemrxiv.12320273.v1.
     Google Scholar
  88. Rojas, M., Rodriguez, Y., Diana, M., Monsalve, Acosta-Ampudia, Y., Camacho, B., Gallo, J. E., Rojas-Villarraga, A., Ramírez-Santana, C., Juan, C., Coronado, D., Manrique, R., Mantilla, R. D., Shoenfeld, Y., Anaya, J. M. (2020) Convalescent plasma in Covid-19: Possible mechanisms of action. Autoimmun. Rev. DOI: 10.1016/j.autrev.2020.102554.
     Google Scholar
  89. Shen, C., Wang, Z., Zhao, F., Yang, Y., Li, J., Yuan, J., Wang, F., Li, D., Yang, M., Xing, L., Wei, J., Xiao, H., Yang, Y., Qu, J., Qing, L., Chen, L., Xu, Z., Peng, L., Li, Y., Zheng, H., Chen, F., Huang, K., Jiang, Y., Liu, D., Zhang, Z., Liu, Y., Liu, L. (2020) Treatment of 5 Critically Ill Patients With COVID-19 With Convalescent Plasma. J. Am. Med. Assoc. 323, 1582-1589.
     Google Scholar