Higher Institute of Medical Techniques, Congo
University of Kinshasa, Congo
* Corresponding author
University of Kinshasa, Congo

Article Main Content

The aims of this work are firstly to carry the antiplasmodial and antioxidant activities of hydromethanolic extracts of three Phyllanthus species and these of two associated plants in order to establish difference firstly between Phyllanthus species and secondarily, between Phyllanthuis species and associated plants. These activities could be explained by plant secondary metabolites; thus, the phytochemical screening was previously carried out using some reagents and the total phenolics and the total flavonoids contents determined using standard chemical compounds for establishing curves. In finally, the relationship established between antiplasmodial activities and antioxidant activities. Results obtained in this work showed that flavonoids are present in Phyllanthus species but absent in both associated plants which contained saponins, steroids and triterpens that missing in Phyllanthus species. Concerning the total flavonoid content, P. niruroides showed high value (0.75±0.03 mg GAE/g of dry extract) than all total flavonoid content values of other plants. For total phenolic content, P. odontadenius showed high value with 0.07±0.01 mg QE/g of dry extract than of two others phyllanthus species and the two associated plants which presented 0.06 mg QE/g of dry extract. Antiplasmodial activities showed values from 13.2±0.0 µg / mL for P. muellerianus to 102.65±0 µg / mL for associated plants. Phyllanthus species showed promising antiplasmodial activity or moderate antiplasmodial activity and the associated plants showed low antiplasmodial activity. The percentage inhibition of radicals could be explaining the high antioxidant activities for Phyllanthus species in comparison with associated plants with P. odontadenius which presented low value (1.83±0.05 µg / mL) and it is also the same for the ABTS radical where P. niruroides showed high value (0.24±0.02 µg/mL) than H. acida and D. englerianum. The established relationship shows that with the high antiplasmodial activities, the report in percentage between antiplasmodial activity and antioxidant activities is also high i.e., 15.61% for P. muellerianus.

References

  1. G. Tirzitis and G. Bartosz, “Determination of antiradical and antioxidant activity: basic principles and new insights”. Acta Biochimica Polonica, Vol. 57(1): 139 – 142, 2010 (Published September 2009).
     Google Scholar
  2. S.O. Sarr, A.D. Fall, R. Gueye, A. Diop, K. Diatta, N. Diop, B. Ndiaye and Y.M. Diop, «Etude de l’activité antioxydante des extraits des feuilles de Vitex doniana (Verbenacea)». Int. J. Biol. Chem. Sci. 9(3): pp. 1263-1269, June 2015.
     Google Scholar
  3. [3] A.M. Blandón, O.M. Mosquera, A.E.G. Sant’ana, A.F.Dos Santos, .L.L.S. Pires, “Antioxidant activity of plant extracts from Colombian Coffee-Growing Eco-Region”. Revista Facultad de Ciencias Básicas, Vol. 13 (1), pp. 56-59, February 2017.
     Google Scholar
  4. R.K. Murray, D.A. Bender, K.M. Botham, P.J. Kennelly, V.W. Rodwell and P.A. Weil, Biochimie de Harper. Nouveaux horizons, de Boeck, 5ème Ed. Traduction de la 29ème Edition américaine par Lionel Domenjoud, bruxelles, pp. 123-125 ; 154-155 ; 714-716, 2013.
     Google Scholar
  5. B. Jacques, and R. André, Biochimie métabolique. Ed ellipses. Paris. pp.: 217-219- 220-223-225, 2004.
     Google Scholar
  6. M. Guilloton, B. Quintard and P.-F. Gallet (2013): Mini manuel de Biochimie. 3ème Dunod, Paris, chap.4, pp. 114 – 116,
     Google Scholar
  7. M. Martinez-Cayuela, “Oxygen free radicals and human disease”. Biochem.77: pp. 147- 161, January 1995 (Accepted September 1994).
     Google Scholar
  8. S. E. Atawodi, “Antioxidant potential of African plants”. African J. of Biotec.4 (2): pp. 128- 133, February 2005.
     Google Scholar
  9. S.R. Georgetti, R. Casagrande, V. M. Di Mambro, E.C.S. Azzolini Ana and J.V. Fonseca Maria, “Evaluation of the antioxidant activity of different flavonoids by the chemiluminescence medhod”. AAPS Pharm Sci. 5 (2): pp: 111–115, june 2003.
     Google Scholar
  10. N. Avissar, C. WhitinJ., and P.Z. Allen, “Plasma selenium-dependent glutathione peroxidase”. J. Biol. Chem. 2: pp. 15850-15855, September1989.
     Google Scholar
  11. A. Marfak, « Radiolyse gamma des flavonoïdes : étude de leur réactivité avec les radicaux issus des alcools : formation de depsides ». Thèse de doctorat en Pharmacie : Sciences-Biologie-Santé : Biophysique. Uiversité de Limoges (France), 199p, 2003.
     Google Scholar
  12. J.-J. Macheix, A. Fleuriet and C. Jay-Allemend, Les composes phénoliques des végétaux. Presses Polytechniques et Universitaires Romandes, Losanne, Italie, pp. 141 - 153, 2005.
     Google Scholar
  13. J.-F. Morot-Gaudry. and R. Prat, Biologie végétale. Croissance et dévéloppement. 2ème Ed., Dunod, Paris, 242p.
     Google Scholar
  14. M. Gardès-Albert, D. Bonnefont-Rousselot, Z. Zohreh Abedinzadeh and D. Daniel Jore, “Reactive oxygen species. How oxygen may become toxic?” L’actualité chimique: Mécanismes biochimiques, N°270. pp: 91-96, November – December 2003.
     Google Scholar
  15. L. Tona, N. Ngimbi, M. Tsakala, K. Mesia, R.K. Cimanga, S. Apers, T. De Bruyne, L. Pieters, J. Totté and A.J. Vlietinck, “Antimalarial activity of 20 crude extracts from nine African medicinal plants used in Kinshasa/congo”. J. Ethnopharmacol. 68, pp. 193 – 203, May 1999.
     Google Scholar
  16. N. Luyindula, L. Tona, S. Lukembila, M. Tsakala, K. Mesia, C.T. Musuamba, R.K. Cimanga, S. Apers, T. De Bruyne, T. Pieters, A. Vlientick, “In vitro antiplasmodial activity of callus extracts from fresh apical stems of Phyllantus niruri L (Euphorbiaceous); Part 1”. Pharm. Biol. 42(7): pp. 1-7, June 2004.
     Google Scholar
  17. N.R. Kikakedimau, N.S. Luyindula, P. Doumas, H. Mutambel’, Y. Baissac, K.R. Cimanga, N.A. Diamuini, O.F. Bulubulu and C. Jay – Allemand, “Phytochemical analysis of Phyllanthus niruri L. (Phyllanthaceae) extracts collected in four geographical areas in the Democratic Republic of the Congo”. African Journal of Plant Science, Vol. 7(1): pp. 9 – 20, January 2013.
     Google Scholar
  18. J.B. Harborne, Phytochemical methods. Chapman and Hall. London; chap.1, pp. 1998.
     Google Scholar
  19. T.J. Mabry, K.R. Markham, M.B. Thomas, The systematic identification of flavonoids. Spring-Verlag, New York; 1970.
     Google Scholar
  20. O. Leconte, J.P. Bonfils, Y. Bauvaira, “Protective effect of iridals from saponin injury in Candida albicans cells”. Phytochemistry 44, pp. 575-579, February 1997.
     Google Scholar
  21. A.E. Hagerman, “Radial diffusion Method for determining tannin in plant extracts”. J. Chem. Ecol.13(3), pp. 437-449, March 1987.
     Google Scholar
  22. S. Peng and C. Jay-Allemand, “Use of antioxidants in extraction of tannins from valnut plants”. J. Chem. Ecol, 17: pp. 887- 896, May 1991.
     Google Scholar
  23. X. Liu, J. Jia, X. Jing, and G. Li, “Antioxidant Activities of Extracts from Sarcocarp of Cotoneaster multiflorus. Hindawi Journal of Chemistry. pp. 1 – 7, May 2018.
     Google Scholar
  24. Y.C.F. Ladoh, S.D. Dibong, M.A. Nyegue, T.R.P. Djembissi, N.B. Lenta, M.E. Mpondo, J. Yinyang, J.D. Wansi, “Antioxidant activity of methanolic extract of Phragmanthera capitata (Loranthaceae) from Citrus sinensis”. Journal of Applied Biosciences, 84: 7636-7643, December 2014.
     Google Scholar
  25. C. Quettier-Deleu, B. Gressier, J. Vasseur, T. Dine, C. Brunet, M. Luyckx, M. Cazin, J.C. Cazin, F. Bailleul, F. Trotin, “Phenolic compounds and antioxidant activities of buckwheat (Fagopyrum esculentum Moench) hulls and flour”. Journal of Ethnopharmacology Vol.72 (1-2): 35-42, October 2000.
     Google Scholar
  26. G. Marinova and V. Batchvarov, “Evaluation of the methods for determination of the free radical scavenging activity by DPPH. Bulgarian Journal of Agricultural Science, 17 (1): pp. 11 – 24, January 2011.
     Google Scholar
  27. P. Molyneux, “The use of the stable free radical diphenylpicrylhydrazyl (DPPH) for estimating antioxidant activity”. Songklanakarin J. Sci. Technol., 26(2): pp. 211-219, Mar.-Apr. 2004.
     Google Scholar
  28. L.P. Leong and G. Shui, “An Investigation of Antioxidant Capacity of Fruits in Singapore Markets”. Food Chemistry, 76(1), pp. 69-75, January 2002.
     Google Scholar
  29. J.-K. Moon and T. Shibamoto, “Antioxidant Assays for Plant and Food Components”. J. Agric. Food Chem. 57(5): 1655–1666, January 2009.
     Google Scholar
  30. W. Trager and J.B. Jensen, “Human malaria parasites in continuous culture”. Science, 193(4254):673-5, August 1976.
     Google Scholar
  31. D.J. Krogstad, I.Y. Gluzman, D.E. Kyle, A.M. Oduola, S.K. Martin, W.K. Milhous, PH Schlesinger, “Efflux of chloroquine from Plasmodium falciparum: Mechanism of chloroquine resistance”. Science 238(4831): pp. 1283-5, November 1987.
     Google Scholar
  32. I. Ljungström, H. Perlmann, M. Schlichtherle, A. Scherf, M. Wahlgren, “Methods in malaria research”. MR4/ATCC, Manassas, Virginia, Parasites, pp. 1 – 10, January 2004.
     Google Scholar
  33. N.R. Kikakedimau, P. Doumas, H. Mutambel’, N.A. Diamuini, O.F. Bulubulu, A.J. Kikalulu, N.S. Luyindula, and K.R. Cimanga (2012): Antiplasmodial activity and phytochemical analysis of Phyllanthus niruri L. (Phyllanthaceae) and Morinda lucida Benth (Rubiaceae) extracts. Journal of Agricultural Science and Technology A 2, pp. 373 – 383, March 2012.
     Google Scholar
  34. N.R. Kikakedimau, C. Franche and N.S. Luyindula (2015): Effetcs of Sodium azide on seeds germination, platlets growth and in vitro antimalarial activities of Phylla tnus odontadenius Müll. Agrg. American Journal of Experimental Agriculture 5(3): pp. 226 – 238, (published October 2014), 2015.
     Google Scholar
  35. R. Chaphalkar, K.G. Apte, Y. Talekar, O.S. Kumar, and M. Nandave, “Antioxidants of Phyllanthus emblica L. Bark Extract Provide Hepatoprotection against Ethanol-Induced Hepatic Damage: A Comparison with Silymarin”. Hindawi Oxidative Medicine and Cellular Longevity, pp. 1 – 10, January 2017.
     Google Scholar
  36. N.R. Kikakedimau, M.D. Musuyu, M.K.O. Nsendo, P. Doumas, M.S. Kahambu, K.M. Taba and N.S. Luyindula, “Correlation between Antioxidants and Antiradical Activities with In Vitro Antimalarial Activity of Phyllanthus odontadenius”. Acta Scientific Medical Sciences, Vol.3 (7): pp. 144 – 154, July 2019.
     Google Scholar
  37. N.B. Arina and Abdul Rohman, “The phenolic contents and antiradical activity of Indonesian Phyllanthus urinaria L”. International Food Research Journal, 20(3): pp. 1119 – 1124, (Accepted:11 December 2012), 2013.
     Google Scholar
  38. W. Vermerris and R. Nicholson, Families of Phenolic Compounds and Means of Classification in Phenolic compound. Chemestry Book, Springer Science, Gainesville, USA, 1 – 34pp, 2006.
     Google Scholar
  39. M. Naczk and F. Shahidi, “Extraction and Analysis of Phenolics in Food”. Journal of Chromatography A, 1054 (1-2), pp. 95-111, October 2004.
     Google Scholar
  40. S.P. Wong, L.P. Leong and J.H. William Koh, “Antioxidant activities of aqueous extracts of selected plants”. Food Chemistry 99(4):775-783, 2006.
     Google Scholar
  41. K.A. Tawaha, F. Alali, M. Al-Gharaibeh, M. Mohammad and T. El-Elimat, “Antioxidant activity and total phenolic content of selected Jordanian plant species”. Food Chemistry 104(4): pp. 1372-1378, November 2007.
     Google Scholar
  42. R.A. Pérez, M.T. Iglesias, E. Pueyo, M. Gonzalez, C. de Lorenzo, “Amino acid composition and antioxidant capacity of Spanish honeys” J Agric Food Chem. 2007 Jan 24;55(2):360-5, 2007 ( publication Décember 2006).
     Google Scholar
  43. B. Halliwell: “Free Radicals and Antioxidants: A Personal View”. Nutrition Reviews, 52(8): pp. 253 – 265, August 1994.
     Google Scholar
  44. N. Cotelle, “Role of Flavonoids in Oxidative Stress”. Current Topics in Medicinal Chemistry, 1, pp. 569-590, 2001.
     Google Scholar
  45. S. V. Jovanovic, S. Steenken, M. Tosic, B. Marjanovic, and M. G. Simic (1994): Flavonoids as Antioxidants. J. Am. Chem. Soc., 116, 11, pp. 4846–4851, June 1994.
     Google Scholar
  46. I. Atti: « Evaluation des activités antioxydant et antiradicalaire d’un mélange d’épices «Ras el hanout». Mémoire de Master Académique, Fac. des Sciences de la Nature et de la Vie. Université KASDI MERBAH Ouargla, Inédit, 61p, 2014. Références bibliographiques et Annexes exclus.
     Google Scholar
  47. H.Enneb, A. Belkhadi, F.Cheour, and A. Ferchichi, « Comparaison des composés phénoliques et du pouvoir antioxydant de la plante de henné (Lawsonia inermis L.) ». Journal of New Sciences, 20 (2) : pp. 788 – 793, August 2015.
     Google Scholar
  48. R. Batista, A.J. Silva Junior and A. Braga de Oliveira, “Plant-Derived Antimalarial Agents: New leads and efficient phytomedicines. Part II. Non-Alkaloids Naturels Products ». Molecules 14: pp. 3037 – 3072, August 2009.
     Google Scholar
  49. J.B. Lekana-Douki, S.L. Oyegue Liabagui, J.B. Bongui, R. Zatra, J. Lebibi, F.S. Toure-Ndouo, “In vitro antiplasmodial activity of crude extracts of Tetrapleura tetraptera and Copaifera religiosa”. BioMed central Research Notes 4:506 (1 - 5), November 2011.
     Google Scholar
  50. S. Ravikumar, S.J. Inbaneson and P. Sungnthi, “In vitro antiplasmodial activity of chosen terrestrial medicinal plants against Plasmodium falciparum”. Asian Pacific Journal of Tropical Biomedicine, pp. 1 – 5, January 2012.
     Google Scholar