Albaha University, KSA
* Corresponding author

Article Main Content

Multiple drug resistance in microorganisms has impersonated critical vulnerability to existing antibiotics; hence substitutes/or options to encounter resistant pathogenic microbes are desirable. Our focus in this study was the synthesis and characterization of Molybdenum oxide (MoO3) nano-bricks and to explore them in terms of their antimicrobial potential. MoO3 nano-bricks were successfully synthesized by hydrothermal method using (NH4)6Mo7O24⋅4H2O precursor and calcination at 500 °C for 2 h. The synthesized MoO3 nano-bricks determined antibacterial activity against four bacterial isolates and one fungal isolate. The MoO3 bricks were characterized using standard physicochemical characterization viz. XRD, SEM, FTIR, and EDX. In the present investigation, characteristic antibacterial properties of MoO3 nano-bricks against Gram +ve (S. aureus ATCC 29213 and S. epidermidis ATCC 12228) and Gram -ve (E. coli ATCC 35218 and K. pneumoniae ATCC 700603) bacteria is noted. The antifungal activity was tested using C. albicans ATCC 10231 as model organism. Molybdenum oxides generate acidic medium and demonstrated potent antimicrobial action for various pathogenic bacterial strains causing infections. The MoO3 nano-bricks depicted broad spectrum antimicrobial potential which strongly recommends their use as material of choice as potential antimicrobial material to be used in food industry, water purification, textile industry etc.

References

  1. L.J. Piddock, The crisis of no new antibiotics—what is the way forward?, The Lancet infectious diseases, 12 (2012) 249-253.
     Google Scholar
  2. A. Huttner, S. Harbarth, J. Carlet, S. Cosgrove, H. Goossens, A. Holmes, V. Jarlier, A. Voss, D. Pittet, Antimicrobial resistance: a global view from the 2013 World Healthcare-Associated Infections Forum, Antimicrobial resistance and infection control, 2 (2013) 31.
     Google Scholar
  3. M.J. Hajipour, K.M. Fromm, A.A. Ashkarran, D.J. de Aberasturi, I.R. de Larramendi, T. Rojo, V. Serpooshan, W.J. Parak, M. Mahmoudi, Antibacterial properties of nanoparticles, Trends in biotechnology, 30 (2012) 499-511.
     Google Scholar
  4. B.K. Potu, M.S. Rao, G.K. Nampurath, M.R. Chamallamudi, K. Prasad, S.R. Nayak, P.K. Dharmavarapu, V. Kedage, K.M. Bhat, Evidence-based assessment of antiosteoporotic activity of petroleum-ether extract of Cissus quadrangularis Linn. on ovariectomy-induced osteoporosis, Upsala journal of medical sciences, 114 (2009) 140-148.
     Google Scholar
  5. S. Taheri, A. Cavallaro, S.N. Christo, L.E. Smith, P. Majewski, M. Barton, J.D. Hayball, K. Vasilev, Substrate independent silver nanoparticle based antibacterial coatings, Biomaterials, 35 (2014) 4601-4609.
     Google Scholar
  6. P. AshaRani, G. Low Kah Mun, M.P. Hande, S. Valiyaveettil, Cytotoxicity and genotoxicity of silver nanoparticles in human cells, ACS nano, 3 (2009) 279-290.
     Google Scholar
  7. L. Cheng, M. Shao, X. Wang, H. Hu, Single‐crystalline molybdenum trioxide nanoribbons: photocatalytic, photoconductive, and electrochemical properties, Chemistry–A European Journal, 15 (2009) 2310-2316.
     Google Scholar
  8. M.B. Rahmani, S.-H. Keshmiri, J. Yu, A. Sadek, L. Al-Mashat, A. Moafi, K. Latham, Y. Li, W. Wlodarski, K. Kalantar-Zadeh, Gas sensing properties of thermally evaporated lamellar MoO3, Sensors and Actuators B: Chemical, 145 (2010) 13-19.
     Google Scholar
  9. D.D. Yao, J.Z. Ou, K. Latham, S. Zhuiykov, A.P. O’Mullane, K. Kalantar-zadeh, Electrodeposited α-and β-phase MoO3 films and investigation of their gasochromic properties, Crystal growth & design, 12 (2012) 1865-1870.
     Google Scholar
  10. K. Kalantar-Zadeh, J. Tang, M. Wang, K.L. Wang, A. Shailos, K. Galatsis, R. Kojima, V. Strong, A. Lech, W. Wlodarski, Synthesis of nanometre-thick MoO 3 sheets, Nanoscale, 2 (2010) 429-433.
     Google Scholar
  11. T. Ivanova, M. Surtchev, K. Gesheva, Investigation of CVD molybdenum oxide films, Materials Letters, 53 (2002) 250-257.
     Google Scholar
  12. W. Dong, B. Dunn, Sol–gel synthesis of monolithic molybdenum oxide aerogels and xerogels, Journal of Materials Chemistry, 8 (1998) 665-670.
     Google Scholar
  13. T.M. McEvoy, K.J. Stevenson, J.T. Hupp, X. Dang, Electrochemical preparation of molybdenum trioxide thin films: Effect of sintering on electrochromic and electroinsertion properties, Langmuir, 19 (2003) 4316-4326.
     Google Scholar
  14. K. Krishnamoorthy, M. Veerapandian, K. Yun, S.J. Kim, New function of molybdenum trioxide nanoplates: toxicity towards pathogenic bacteria through membrane stress, Colloids and Surfaces B: Biointerfaces, 112 (2013) 521-524.
     Google Scholar
  15. C. Zollfrank, K. Gutbrod, P. Wechsler, J.P. Guggenbichler, Antimicrobial activity of transition metal acid MoO3 prevents microbial growth on material surfaces, Materials Science and Engineering: C, 32 (2012) 47-54.
     Google Scholar
  16. K. Krishnamoorthy, M. Premanathan, M. Veerapandian, S.J. Kim, Nanostructured molybdenum oxide-based antibacterial paint: effective growth inhibition of various pathogenic bacteria, Nanotechnology, 25 (2014) 315101.
     Google Scholar
  17. T. Amna, M.S. Hassan, N.A. Barakat, D.R. Pandeya, S.T. Hong, M.-S. Khil, H.Y. Kim, Antibacterial activity and interaction mechanism of electrospun zinc-doped titania nanofibers, Applied microbiology and biotechnology, 93 (2012) 743-751.
     Google Scholar
  18. P. Wongkrua, T. Thongtem, S. Thongtem, Synthesis of h-and α-MoO3 by refluxing and calcination combination: Phase and morphology transformation, photocatalysis, and photosensitization, Journal of Nanomaterials, 2013 (2013).
     Google Scholar
  19. T.H. Chiang, H.C. Yeh, The synthesis of α-MoO3 by ethylene glycol, Materials, 6 (2013) 4609-4625.
     Google Scholar
  20. A. Chithambararaj, A.C. Bose, Hydrothermal synthesis of hexagonal and orthorhombic MoO3 nanoparticles, Journal of Alloys and Compounds, 509 (2011) 8105-8110.
     Google Scholar
  21. Y.-W. Wang, A. Cao, Y. Jiang, X. Zhang, J.-H. Liu, Y. Liu, H. Wang, Superior antibacterial activity of zinc oxide/graphene oxide composites originating from high zinc concentration localized around bacteria, ACS applied materials & interfaces, 6 (2014) 2791-2798.
     Google Scholar
  22. N. Tétault, H. Gbaguidi-Haore, X. Bertrand, R. Quentin, N. Van Der Mee-Marquet, Biocidal activity of metalloacid-coated surfaces against multidrug-resistant microorganisms, Antimicrobial resistance and infection control, 1 (2012) 35.
     Google Scholar