Enzybiotics with Lectin Properties and Lectinbiotics with Enzyme Activities – Multifunctional Modulators of Communications in Organism: Fundamentals and Unlimited Potential in Food Industry, Biosensors and Medicine

##plugins.themes.bootstrap3.article.main##

  •   Vladimir M. Lakhtin

  •   Mikhail V. Lakhtin

  •   Valeriy Yu. Davydkin

  •   Alexandra V. Melikhova

  •   Igor Yu. Davydkin

  •   Olga G. Zhilenkova

Abstract

Examples of the nomenclature enzymes of all known classes with intrinsic lectin properties are represented, described and ordered. Such bi/multifunctional enzymes (enzybiotics) act as communicative agents, possess independent carbohydrate binding motifs, domains, epitopes or modules within subunit/molecule or supra-molecular assembly (free or solid-phased). Lectin part serve as modulator, switch and/or navigator of the whole resulting pattern enzyme (involving both catalytic center and lectinic sites) specificities toward targets. These enzybiotics (native and recombinant) as well as lectinbiotics (lectin-biotics) with intrinsic enzyme activities and high communicative potential possess promising broad prospects in food industry, medical biotechnology, prophylaxis and therapy. Among examples there are probiotic lectin enzybiotics (mainly from bifidobacteria and lactobacilli) that can serve perspective metabolite postbiotic systems for support or correction of the healthy individual or the patient mucosal open cavity biotope pathological status, respectively. Lectin-enzyme relationships improve platform for constructing advanced autoregulated systems influencing interactome at all levels of the organism. They support a lot of possible innovations in industrial biotechnology and medicine.


Keywords: Enzyme, lectin domain, carbohydrate binding, CBM, recognition, pattern specificity, communication, industry, medicine

References

D. W. Abbott, J. M. Eirín-López, and A. B. Boraston. “Insight into Ligand Diversity and Novel Biological Roles for Family 32 Carbohydrate-Binding Modules,” Molecular Biology and Evolution, 2008; 25: 155-67.

L. J. Alderwick, G. S. Lloyd, H. Ghadbane, J. W. May, A. Bhatt, L. Eggeling et al. “The C-terminal domain of the Arabinosyltransferase Mycobacterium tuberculosis EmbC is a lectin-like carbohydrate binding module,” PLoS Pathog, 2011 Feb;7(2):e1001299.

S. Armenta, Z. Sánchez-Cuapio, M. E. Munguia, N. O. Pulido, A. Farrés, K. Manoutcharian et al. “The role of conserved non-aromatic residues in the Lactobacillus amylovorus alpha-amylase CBM26-starch interaction,” International Journal of Biological Macromolecules, 2019; 121: 829-38. DOI: 10.1016/j.ijbiomac.2018.10.061.

H. Ashida, A. Miyake, M. Kiyohara, J. Wada, E. Yoshida, H. Kumagai, T. Katayama, and K. Yamamoto. “Bifidobacterium bifidum are essential for the utilization of fucosylated milk oligosaccharides and Glycoconjugates,” Glycobiology. 2009;19:1010-7.

C. K. Bandi, A. Goncalves, S. V. Pingali, and S. P. S. Chundawat. “Carbohydrate-binding domains facilitate efficient oligosaccharides synthesis by enhancing mutant catalytic domain transglycosylation activity,” Biotechnology and Bioengineering, 2020; 117 (10): 2944-56. DOI: 10.1002/bit.27473.

H. Barth, K. Aktories, M. R. Popoff, and B. G. Stiles. “Binary bacterial toxins: biochemistry, biology, and applications of common Clostridium and Bacillus proteins,” Microbiology and Molecular Biology Reviews, 2004; 68: 373-402.

R. Bishnoi, S. Mahajan, and T. N. C. Ramya. “An F-type lectin domain directs the activity of Streptosporangium roseum alpha-L-fucosidase,” Glycobiology, 2018; 28 (11): 860–75. DOI: 10.1093/glycob/cwy079.

A. B. Boraston, E. Ficko-Blean, and M. Healey. “Carbohydrate recognition by a large sialidase toxin from Clostridium perfringens,” Biochemistry, 2004;46:11352-60.

W. I. Chou, T. W. Pai, S. H. Liu, B. K. Hsiung, and M. D. T. Chang. “The family 21 carbohydrate-binding module of glucoamylase from Rhizopus oryzae consists of two sites playing distinct roles in ligand binding,” Biochemical Journal, 2006; 396: 469-77.

M. Claesson, Y. Lindqvist, S. Madrid, T. Sandalova, R. Fiskesund, S. Yu et al. “Crystal structure of bifunctional aldos-2-ulose dehydratase/isomerase from Phanerochaete chrysosporium with the reaction intermediate ascopyrone M,” Journal of Molecular Biolohy, 2012; 417 (4): 279-93.

D. W. Cockburn, C. Suh, K. P. Medina, R. M. Duvall, Z. Wawrzak, B. Henrissat, and N. M. Koropatkin. “Novel carbohydrate binding modules in the surface anchored alpha-amylase of Eubacterium rectale provide a molecular rationale for the range of starches used by this organism in the human gut,” Molecular Microbiology, 2018; 107 (2):249–64. DOI: 10.1111/mmi.13881.

V. Codera, H. J. Gilbert, M. Faijes, and A. Planas. “Carbohydrate-binding module assisting glycosynthase-catalysed polymerizations,” Biochemical Journal, 2015; 470 (1): 15-22. DOI: 10.1042/BJ20150420.

O. Crasson, G. Courtade, R. R. Léonard, F. L. Aachmann, F. Legrand, R. Parente et al. “Human Chitotriosidase: Catalytic Domain or Carbohydrate Binding Module, Who’s Leading HCHT’s Biological Function,” Scientific Reports, 2017; 7: 2768. DOI: 10.1038/s41598-017-02382-z.

L. I. Crouch, A. Labourel, P. H. Walton, G. J. Davies, and H. J. Gilbert. “The Contribution of Non-catalytic Carbohydrate Binding Modules to the Activity of Lytic Polysaccharide Monooxygenases,” Journal of Biological Chemistry (JBC), 2016; 291 (14): 7439–49. DOI: 10.1074/jbc.M115.702365.

F. Cuskin, J. E. Flint, T. M. Gloster, C. Morland, A. Baslé, B. Henrissat et al. “How nature can exploit nonspecific catalytic and carbohydrate binding modules to create enzymatic specificity,” Proceedings Natl Acad Sci U S A (PNAS), 2012; 109 (51): 20889–94. DOI: 10.1073/pnas.1212034109.

D. M. Dias, J. Furtado, E. Wasielewski, R. Cruz, B. Costello, L. Cole et al. “Biophysical characterization of laforin-carbohydrate interaction,” Biochemical Journal, 2016; 473 (3): 335-45.

K. Drickamer, 2014. F-type lectins, Human CTLD database - Imperial College London www.imperial.ac.uk, Animal lectins home. [18] Du, L.-J. Qu, and J. Xiao. “Crystal structures of the extracellular domains of the CrRLK1L receptor-like kinases ANXUR1 and ANXUR2,” Protein Science, 2018; 27 (4): 886-92. DOI: 10.1002/pro.3381.

C. J. Duan, Y. L. Feng, Q. L. Cao, M. Y. Huang, and J. X. Feng. “Identification of a novel family of carbohydrate-binding modules with broad ligand specificity,” Scientific Reports, 2016 Jan 14;6:19392. DOI: 10.1038/srep19392.

S. Emanuelle, M. K. Brewer, D. A. Meekins, and M. S. Gentry. “Unique carbohydrate binding platforms employed by the glucan phosphatases,” Cellular and Molecular Life Sciences (CMLS), 2016; 73 (14): 2765-78.

Enzyme Nomenclature. Recomendations 1992. Orlando: Acad. Press. 1992.

M. E. Etzler, G. Kalsi, N. N. Ewing, N. J. Roberts, R. B. Day, and J. B. Murphy. “A nod factor binding lectin with apyrase activity from legume roots,” Proceedings Natl Academy Sciences USA (PNAS), 1999;96:5856-61.

European Bioinformatics Institute 2010> Databases> InterPro.IPR008979 (Gal-binding domain-like in proteins).

F. Fredslund, M. A. Hachem, R. J. Larsen, P. G. Sørensen, P. M. Coutinho, L. L. Leggio, and B. Svensson. “Crystal structure of alpha-galactosidase from Lactobacillus acidophilus NCFM: insight into tetramer formation and substrate binding,” Journal of Molecular Biology (JMB), 2011 Sep 23;412(3):466-80. doi: 10.1016/j.jmb.2011.07.057.

A. M. Frey, M. J. Satur, C. Phansopa, J. L. Parker, D. Bradshaw, J. Pratten et al. “Evidence for a carbohydrate-binding module (CBM) of Tannerella forsythia NanH sialidase, key to interactions at the host-pathogen interface,” Biochemical Journal, 2018; 475 (6): 1159-76. DOI: 10.1042/BCJ20170592.

T. A. Fritz, J. Raman, and L. A. Tabak. “Dynamic association between the catalytic and lectin domains of human UDP-GalNAc:polypeptide alpha-N-acetylgalactosaminyl-transferase-2,” Journal of Biological Chemistry (JBC), 2006; 281: 8613-9.

D. Guillén, M. Santiago, L. Linares, R. Pérez, J. Morlon, B. Ruiz, S. Sánchez, and R. Rodríguez-Sanoja. “alpha-Amylase starch binding domains: cooperative effects of binding to starch granules of multiple tandemly arranged domains,” Applied and Environment Microbiology, 2007;73:3833-7.

A. Hettle, A. Fillo, K. Abe, P. Massel, B. Pluvinage, D. N. Langelaan et al. “Properties of a family 56 carbohydrate-binding module and its role in the recognition and hydrolysis of β-1,3-glucan,” Journal of Biological Chemistry (JBC), 2017; 292 (41): 16955–68. DOI: 10.1074/jbc.M117.806711.

J. Holck, F. Fredslund, M. S. Møller, J. Brask, K. B. R. M. Krogh, L. Lange et al. “A carbohydrate-binding family 48 module enables feruloyl esterase action on polymeric arabinoxylan,” Journal of Biological Chemistry (JBC), 2019; 294 (46): 17339-53. DOI: 10.1074/jbc.RA119.009523.

W. Huang, V. Lunin, Y. Li, S. Suzuki, N. Sugiura, H. Miyazono, and M. Cyglier. “Crystal structure of Proteus vulgaris chondroitin sulfate ABC lyase I at 1.9 A resolution,” Journal of Molecular Biology (JMB), 2003; 328: 623-34.

H. Inoue, S. Kishishita, A. Kumagai, M. Kataoka, T. Fujii, and K. Ishikawa. “Contribution of a family 1 carbohydrate-binding module in thermostable glycoside hydrolase 10 xylanase from Talaromyces cellulolyticus toward synergistic enzymatic hydrolysis of lignocellulose,” Biotechnology for Biofuels, 2015; 8: 77. DOI: 10.1186/s13068-015-0259-2.

N. Ito, S. E. Phillips, C. Stevens, Z. B. Ogel, M. J. McPherson, J. N. Keen, K. D. Yadav, and P. F. Knowles. “Novel thioester bond revealed by a 1.7 A crystal structure of galactose oxidase,” Nature, 1991; 350: 87-90.

S. Janeček, F. Mareček, E. A. MacGregor, and B. Svensson. “Starch-binding domains as CBM families-history, occurrence, structure, function and evolution,” Biotechnology Advances, 2019 Dec; 37 (8): 107451. DOI: 10.1016/j.biotechadv.2019.107451.

T. Katoh, M. N. Ojima, M. Sakanaka, H. Ashida, A. Gotoh, and T. Katayama. “Enzymatic Adaptation of Bifidobacterium bifidum to Host Glycans, Viewed from Glycoside Hydrolyases and Carbohydrate-Binding Modules,” Microorganisms, 2020 Apr; 8(4): 481. DOI: 10.3390/microorganisms8040481.

A. A. Kognole, and C. M. Payne. “Cellulose-specific Type B carbohydrate binding modules: understanding oligomeric and non-crystalline substrate recognition mechanisms,” Biotechnology for Biofuels. 2018 Nov 30; 11: 319. DOI: 10.1186/s13068-018-1321-7.

M. L. Leth, M. Ejby, E. Madland, Y. Kitaoku, D. J. Slotboom, A. Guskov et al. “Molecular insight into a new low-affinity xylan binding module from the xylanolytic gut symbiont Roseburia intestinalis,” FEBS Journal, 2020; 287 (10): 2105-17. DOI: 10.1111/febs.15117.

E. Lira-Navarrete, M. de Las Rivas, I. Compañón, M. C. Pallarés, Y. Kong, J. Iglesias-Fernández et al. “Dynamic interplay between catalytic and lectin domains of GalNAc-transferases modulates protein O- glycosylation,” Nature Communications, 2015 May 5; 6: 6937. DOI: 10.1038/ncomms7937.

M. Lakhtin, V. Alyoshkin, V. Lakhtin, S. Afanasyev, L. Pozhalostina, and V. Pospelova. “Probiotic lactobacillus and bifidobacterial lectins against Candida albicans and Staphylococcus aureus clinical strains: new class of pathogen biofilm destructors,” Probiotics and Antimicrobial Proteins, 2010; 2: 186-96, DOI:10.1007/s12602-010-9046-3.

M. Lakhtin, V. Alyoshkin, V. Lakhtin, Y. Nesvizhsky, S. Afanasyev, and V. Pospelova. “The role of lectins from probiotic microorganisms in sustaining the macroorganism,” Vestnik of Russian Academy of Medical Sciences (Moscow), 2010; No2: 3-8 (in Russian).

M. V. Lakhtin, V. M. Lakhtin, S. S. Afanasiev, and V. A. Aleshkin. “Lectin enzymes – regulators of metabolism,” Problems of Scientific Thought (Dnepr, Ukraine) [Problemy nauchnoy misli (Dnepr)], 2017;1(11):71-90 (in Russian), ISSN: 1561-6916, https:/ /elibrary.ru/item.asp?id=30469273.

M. V. Lakhtin, V. M. Lakhtin, S. S. Afanasyev, and V. A. Alyoshkin. “Lectins: Prospects in Immunology, Microbiology and Biotechnology,” Ural Scientific Bulletin (Uralsk, Kazakhstan) [Uralskiy nauchniy vestnik (Uralsk, Kazahstan)], 2017; 12 (3): 25-46 (in Russian), https://www.elibrary.ru/item.asp?id=30776382.

M. Lakhtin, V. Lakhtin, S. Afanasiev, A. Bajrakova, and V. Aleshkin. “Probiotic lectins: Microbiocenosis functional organizers,” In: FEMS 2017. Abstract Book: Environmental Microbiology/Microbial Ecology /Microbial Communities - Part II, Abstract FEMS7-1754, https://fems-microbiology.org/wp-content/uploads/2017/07/FEMS2017_abstracts-book_GS.pdf.

M. V. Lakhtin, V. M. Lakhtin, S. S. Afanasyev, A. L. Bayrakova, A. V. Karaulov, M. S. Afanasyev, and V. A. Alyoshkin. “Mobile synbiotope microbiocenosis against pathogens,” Acta Biomedica Scientifica (East Siberian Biomedical Journal), 2016; 1 (3): 168-73 (In Russian), https://doi.org/10.12737/article_590823a55940f7.08921853.

M. V. Lakhtin, V. M. Lakhtin, and V. A. Alyoshkin. “Lectin and enzyme relationships in microbiology,” International Journal of Molecular and Clinical Microbiology (IJMCM), 2011; 1 (1): 9-14, ISSN: 2008-9171, http://www.ijmcm.ir/issue_110612_110760.html.

M. Lakhtin, V. Lakhtin, and V. Aleshkin. “Human probiotic and protective lectins as supersystem,” News of Science and Education, 2019; 4 (4): 3-14 (in Russian), ISSN: 2312-2773, https://www.elibrary.ru/item.asp?id=38508569.

M. V. Lakhtin, V. M. Lakhtin, and V. A. Aleshkin. “The Role and Prospects of Lectins of Indigenous Mucosal Microflora in Regulation of Mucosal Microbiocenoses of Open Cavities of the Body,” Problems of Scientific Thought (Dnepr, Ukraine) [Problemy nauchnoy misli (Dnepr, Ukraina)], 2020; 4 (1): 6-23 (in Russian), ISSN (Print): 1561-6916, https://www.elibrary.ru/title_about.asp?id=56372.

M. V. Lakhtin, V. M. Lakhtin, V. A. Aleshkin, and S. S. Afanasiev. “Probiotic lectins for innovations,” News Science Education, 2018; 3 (10): 117-29 (in Russian), ISSN: 2312-2773, https://elibrary.ru/contents.asp?id=35779749.

M. V. Lakhtin, V. M. Lakhtin, V. A. Aleshkin, and S. S. Afanasiev. “Metabolite Multiprobiotic Formulas for Microbial Health,” In: “Oral Health by Using Probiotic Products”, Mahmoudi Razzagh (Ed). 2019. London, InTech, 71-91, DOI: http://dx.doi.org/10.5772/intechopen.78421.

M. Lakhtin, V. Lakhtin, V. Alyoshkin, S. Afanasyev, and V. Pospelova. “Three protective lectin systems in probiotic lactobacillus consortium,” In: Proceedings of the 4th Congress of European Microbiologists (FEMS 2011) (June 26-30, 2011, Geneva, Switzerland), Scientific Program: Page 94, СD-ROM Abstracts, PDF–360, http://www2.kenes.com/fems2011/sci/Documents/ScientificProgram.pdf.

M. Lakhtin, V. Lakhtin, V. Alyoshkin, and S. Afanasyev. “Lectins of Beneficial Microbes: System Organization, Functioning, and Functional Superfamily,” Beneficial Microbes, 2011; 2 (2): 155–65.

M. V. Lakhtin, V. M. Lakhtin, V. A. Alyoshkin, S. S. Afanasyev, and A. V. Alyoshkin. “Lectins and Enzymes in Biology and Medicine,” Moscow: Dynasty Publishing House, 2010: 496 pp (in Russian), ISBN: 978-5-98125-076-7, https://elibrary.ru/item.asp?id=19557184.

M. V. Lakhtin, V. M. Lakhtin, A. L. Bajrakova, V. Y. Davydkin, I.Y. Davydkinu, M. S. Afanasiev, S. S. Afanasiev, and V. A. Aleshkin. “Analyzing the Recognition Factors Influencing Microbiocenosis Microecology: Prospects for Medical Biotechnology,” In: Recent Progress in Microbiology and Biotechnology, 2020, Volume 2 (Essam A Makky, Ed): 49-59. DOI: 10.9734/bpi/rpmb/v2, Published Sep 30, 2020, Print ISBN: 978-93-90206-62-9, eBook ISBN: 978-93-90206-59-9, http://www.bookpi.org/bookstore/product/recent-progress-in-microbiology-and-biotechnology-vol-2/.

M. V. Lakhtin, V. M. Lakhtin, A. V. Melikhova, I. Y. Davydkin, and V. Y. Davydkin. “Postbiotics of Acilact, lactobacilli and bifidobacteria in dermato-venerology and cosmetology,” News of the State University of Humanities and Technology (Moscow Region) [Izvestiya GGTU (Moskovskaya oblast)]: Medicine, Pharmacy, 2020; No 4: 168-70 (in Russian), ISSN: 2687-1521, https://elibrary.ru/title_about_new.asp?id=75383.

M. V. Lakhtin, V. M. Lakhtin, A. V. Melikhova, I. Y. Davydkin, and V. Y. Davydkin. “Strategies of increasing activities of high molecular mass postbiotics of Acilact and cultures of lactobacilli and bifidobacteria,” News of the State University of Humanities and Technology (Moscow Region) [Izvestiya GGTU (Moskovskaya oblast)]: Medicine, Pharmacy, 2020; No 4: 171-3 (in Russian), ISSN 2687-1521, https://elibrary.ru/title_about_new.asp?id=75383.

V. M. Lakhtin. “Affinity of lectins to enzymes,” In: Materials of the conference “The questions of interactions and cell surface” (19-20 June, 1985, Saratov, Russia), Programme: An oral communication at 19 June as the First report) (in Russian).

V. M. Lakhtin. “Lectins for Investigation of Proteins and Carbohydrates,” In: Reviews of Science and Technique, Series Biotechnology, Volume 2 (Klyosov AA, Ed), Moscow: VINITI Press, 1987: 289 pp. [In: Vsesoyuzniy Institut Nautchnoy i Tehnicheskoy Informatsii, Moskva, Itogi Nauki i Tehniki, Seriya Biotehnologiya, 1987, Vol 2 (Klyosov AA, Ed)] (in Russian).

V. M. Lakhtin. “Enzymes of carbohydrate metabolism with lectin domains of sorption on polysaccharides,” In: Study and Application of Lectins. Volume 1 (K Kisand, Ed): General Questions, Chemistry and Biochemistry of Lectins. Series “Scientific Notes of the Tartu University”. Issue 869. Tartu: 1989: 128-31 (in Russian), https://www.alib.ru/au-/nm-izuchenie_primenenie_lektinov/.

V. M. Lakhtin. “Biotechnological Aspects of Lectins,” In: Lectins: Biology, Biochemistry, Clinical Biochemistry. 1990, Volume 7 (TC Bog-Hansen and Jan Kocourek, Editors). St-Louis, Sigma Chemical Company, 1990: 417-26.

V. M. Lakhtin. “Specificity of Lectins of Microoganismsm,” Applied biochemistry and microbiology (Moscow) [Prikladnaya biohimiya i microbiologiya (Moskva), 1992; 28 (4): 483-501 (in Russian), ISSN: 0555-1099, https://www.elibrary.ru/contents.asp?id=34478754.

V. M. Lakhtin. “Molecular organization of lectins,” Molecular Biology (Moscow) [Molekulyarnaya biologiya (Moskva)], 1994; 28 (2): 245-73 (in Russian), ISSN: 0026-8984, https://www.elibrary.ru/contents.asp?id=34351163.

V. M. Lakhtin. “Lectins in study of carbohydrate moiety of glycoproteins and other natural glycoconjugates,” Biochemistry (Moscow) [Biokhimiya (Moskva)], 1995; 60 (2): 187-217 (in Russian), ISSN (PRINT): 0006-2979, https://www.elibrary.ru/contents.asp?id=34828853.

V. M. Lakhtin. “Applied enzymology and glycobiology,” In: International Workshop “BIOENCAPSULATION VI: From fundamentals to industrial applications” (August 30 - September 1, 1997, Bellaterra, Barcelona, Spain): Poster 18 (4 pages).

V. M. Lakhtin. “Lectins and their partners in complx systems,” In: Materials of the III conference “Chemistry and biochemistry of carbohydrates” (9-11 September, 2004, Saratov, Russia). Saratov, “Rakurs” Press, 2004: 41

V. M. Lakhtin, S. S. Afanasyev, V. A. Alyoshkin, Y.V. Nesvizhsky, M. V. Lakhtin, and V. V. Shubin. “Classification of lectins as universal regulator molecules of biological systems,” Annals of the Russian Academy of Medical Sciences (Moscow) [Vestnik RAMN (Moskva)], 2009; No3: 36-43 (in Russian).

V. M. Lakhtin, S. S. Afanasyev, V. A. Alyoshkin, Y. V. Nesvizhsky, V. V. Pospelova, and M. V. Lakhtin. “Strategical aspects of constructing probiotics of the future,” Annals of the Russian Academy of Medical Sciences (Moscow) [Vestnik RAMN (Moskva)], 2008;No2:33-44 (in Russian).

V. M. Lakhtin, V. A. Alyoshkin, M. V. Lakhtin, S. S. Afanasyev, V. V. Pospelova, and B. A. Shenderov. “Lectins, adhesins and lectin-like substances of lactobacilli and bifidobacteria,” Annals of the Russian Academy of Medical Sciences (Moscow) [Vestnik RAMN (Moskva)], 2006;No1:28-34 (in Russian).

V. M. Lakhtin, M. V. Lakhtin, S. S. Afanasyev, and V. A. Alyoshkin. “Symbiotic Lectins – Metabolomebiotics and Carriers of Metabiotics,” Gastroenterology of Saint Petersburg [Gastroenterologiya Sankt-Peterburga], 2016; No3-4: Page М15 (in Russian), https://www.elibrary.ru/item.asp?id=28297816.

V. M. Lakhtin, M. V. Lakhtin, S. S. Afanasyev, V. Y. Davydkin, and V. A. Aleshkin. “Mucosal Open Cavities: Organs Supported by Specific Microbiocenoses Increasing Human Resistance,” In: Current Strategies in Biotechnology and Bioresource Technology, 2020, Volume 4 (Amal Hegazi Ahmed Elrefaei, Editor): 140-55. Book Publisher International. DOI: 10.9734/bpi/rpmb/v4, Print ISBN: 978-93-90516-06-3, eBook ISBN: 978-93-90516-11-7, http://www.bookpi.org/bookstore/product/recent-progress-in-microbiology-and-biotechnology-vol-4/.

V. Lakhtin, M. Lakhtin, and V. Alyoshkin. “Lectins of Living Organisms. The Overview,” Anaerobe, 2011; 17 (6): 452-5, DOI: 10.1016/j.anaerobe.2011.06.004, WOS:000299982800050, https://www.elibrary.ru/item.asp?id=22049503.

V. Lakhtin, M. Lakhtin, and V. Alyoshkin. “Synbiotic minibioreactor regulating by probiotic lectins, metal cations and Glycoconjugates,” In: Proceedings of the 19th Eurocarb 2017 (2-6 July 2017, Barcelona). Scientific Program & Abstract Book. Page 591 (Poster 320), http://www.eurocarb2017.com/images/site/book/LIBRO_COMPLETO_EUROCARB.pdf.

V. Lakhtin, M. Lakhtin, and V. Alyoshkin. “Interaction of oxydoreductases, transferases, lyases, isomerases and ligases with carbohydrate sensitive reagents,” Problems of Scientific Thought (Dnepr, Ukraine) [Problemy nauchnoy misli (Dnepr)], 2019; 5 (8): 3-66, ISSN: 1561-6916, https://elibrary.ru/contents.asp?id=39256212.

V. Lakhtin, M. Lakhtin, and V. Alyoshkin. “Interaction of esterases with carbohydrate-sensitive reagents,” News of Science and Education, 2019; 4 (8): 3-80, ISSN: 2312-2773, https://elibrary.ru/contents.asp?id=39220631.

V. Lakhtin, M. Lakhtin, and V. Alyoshkin. “Interaction of glycosidases with carbohydrate-sensitive reagents,” News of Science and Education, 2019; 5 (8): 3-93, ISSN: 2312-2773, https://elibrary.ru/contents.asp?id=39220310.

V. Lakhtin, M. Lakhtin, and V. Alyoshkin. “Interaction of proteases and other hydrolases (EC 3.5 and higher) with carbohydrate-sensitive reagents,” News of Science and Education, 2019; 6 (8): 3-86, ISSN: 2312-2773, https://www.elibrary.ru/contents.asp?id=39220628.

V. M. Lakhtin, M. V. Lakhtin, A. L. Bajrakova, M. S. Afanasiev, S. S. Afanasiev, and V. A. Aleshkin. “Probiotic Factors Influencing Fungal Microecology: Strategies in Medical Biotechnology,” In: Recent Progress in Microbiology and Biotechnology, 2020, Volume 2 (Essam A Makky, Ed): 28-39, DOI: 10.9734/bpi/rpmb/v2, Published Sep 30, 2020, Print ISBN: 978-93-90206-62-9, eBook ISBN: 978-93-90206-59-9, http://www.bookpi.org/bookstore/product/recent-progress-in-microbiology-and-biotechnology-vol-2/.

V. M. Lakhtin, M. V. Lakhtin, V. Y. Davydkin, A. V. Melikhova, and I. Y. Davydkin. “Prospects of the recognizing glycoconjugates protective metabolite-cell systems in prophylaxis and therapy of Covid infections and diseases,” News of the State University of Humanities and Technology (Moscow Region) [Izvestiya GGTU (Moskovskaya oblast)]: Medicine, Pharmacy, 2020; No 4: 161-3 (in Russian), ISSN: 2687-1521, https://elibrary.ru/title_about_new.asp?id=75383.

V. M. Lakhtin, M. V. Lakhtin, V. Y. Davydkin, A. V. Melikhova, I. Y. Davydkin, and V. A. Aleshkin. “Relationships between probiotic lectins and postbiotics,” World Journal of Advanced Research and Review (WJARR), 2020; 7 (1): 142-8, DOI: 10.30574/wjarr.2020.7.1.0234, e-ISSN: 2581-9615, http://wjarr.com/content/relationships-between-probiotic-lectins-and-postbiotics.

V. M. Lakhtin, M. V. Lakhtin, V. Y. Davydkin, A. V. Melikhova, I. Y. Davydkin, and O. G. Zhilenkova. “Specific communicative relationships between proteins and glycoconjugates in organism in connection with Covid infections,” Ural Scientific Bulletin (Uralsk, Kazakhstan) [Uralskiy nauchniy vestnik (Uralsk, Kazahstan)], 2020;2(12):15-28 (in Russian), https://elibrary.ru/title_about.asp?id=38797.

V. M. Lakhtin, M. V. Lakhtin, V. Y. Davydkin, A. V. Melikhova, I. Y. Davydkin, O. G. Zhilenkova, and . V. EKlimova. “Antibiotic-like systems of bifidobacteria and lactobacilli,” American Scientific Journal, 2020; 44 (1): 4-8, ISSN: 2707-9864, https://american-issue.info/arhiv-zhurnala/.

V. Lakhtin, M. Lakhtin, V. Pospelova, and B. Shenderov. “Lactobacilli and bifidobacteria lectins as possible signal molecules regulating intra- and inter-population bacteria-bacteria and host-bacteria relationships. Part I. Methods of bacterial lectin isolation, physicochemical characterization and some biological activity investigation,” Microbial Ecology in Health and Disiease, 2006; 18 (1): 55-60, https://www.elibrary.ru/item.asp?id=13525247.

V. Lakhtin, M. Lakhtin, V. Pospelova, and B. Shenderov. “Lectins of lactobacilli and bifidobacteria. II. Probiotic lectins of lactobacilli and bifidobacteria as possible signal molecules regulating inter- and intra-population relationships between bacteria and between bacteria and the host,” Microbial Ecology in Health and Disiease, 2007; 19 (3): 153-7, https://www.elibrary.ru/contents.asp?id=33411497.

V. M. Lakhtin, and I. A. Yamskov. “Lectins in the Investigation of Receptors, Russian Chemical Reviews,” 1991; 60 (8): 903-23, ISSN: 0036-021X, eISSN: 1468-4837, https://www.elibrary.ru/contents.asp?id=34843193.

V. M. Lakhtin, and O. M. Zaprometova. “alpha-Galactosidase of Сephalosporium acremonium 237 and Its Lectin Properties,” Biochemistry (Moscow), 1988;53(8):1270-9, https://www.elibrary.ru/contents.asp?id=33821990.

D. J. Little, R. Pfoh, F. L. Mauff, N. C. Bamford, C. Notte, P. Baker et al. “PgaB orthologues contain a glycoside hydrolase domain that cleaves deacetylated poly-β(1,6)-N-acetylglucosamine and can disrupt bacterial biofilms,” PLoS Pathogens, 2018 Apr; 14(4): e1006998, DOIi: 10.1371/journal.ppat.1006998.

V. Lorenz, Y. Ditamo, R. B. Cejas, M. E. Carrizo, E. P. Bennett, H. Clausen et al. “Extrinsic Functions of Lectin Domains in O-N-Acetyl-Galactosamine Glycan Biosynthesis,” Journal of Biological Chemistry (JBC), 2016; 291 (49): 25339-50.

A. Mamiya, M. Sakka, A. Kosugi, H. Katsuzaki, A. Tanaka, E. Kunitake et al. “Significance of a family-6 carbohydrate-binding module in a modular feruloyl esterase for removing ferulic acid from insoluble wheat arabinoxylan,” Enzyme and Microbial Technology, 2020 Aug; 138: 109546. DOI: 10.1016/j.enzmictec.2020.109546.

A. Miki, S. Inaba, T. Maruno, Y. Kobayashi, and M. Oda. “Tryptophan introduction can change beta-glucan binding ability of the carbohydrate-binding module of endo-1,3-beta-glucanase,” Bioscience, Biotechnology and Biochemistry, 2017; 81 (5): 951-7, DOI: 10.1080/09168451.2017.1285687.

J. I. Mobbs, A. Koay, A. Di Paolo, M. Bieri, E. J. Petrie, M. A. Gorman et al. “Determinants of oligosaccharide specificity of the carbohydrate-binding modules of AMP-activated protein kinase,” Biochemistry Journal, 2015; 468 (2): 245-57.

M. Molina, C. Moulis, N. Monties, D. Guieysse, S. Morel, G. Cioci et al. “A specific oligosaccharide-binding site in the alternansucrase catalytic domain mediates alternan elongation,” Journal of Biological Chemistry (JBC), 2020; 295 (28): 9474-89. DOI: 10.1074/jbc.RA120.013028.

C. Montanier, J. E. Flint, D. N. Bolam, H. Xie, Z. Liu, A. Rogowski et al. “Circular permutation provides an evolutionary link between two families of calcium dependent carbohydrate binding modules,” Journal of Biological Chemistry (JBC), 2010. Published on July 21, 2010 as Manuscript M110.142133.

K. Moriyoshi, D. Koma, H. Yamanaka, T. Ohmoto, and K. Sakai. “Functional analysis of the carbohydrate-binding module of an esterase from Neisseria sicca SB involved in the degradation of cellulose acetate,” Bioscience, Biotechnology and Biochemistry, 2010; 74 (9), 100213-1-3, DOI: 10.1271/bbb.100213, https://www.tandfonline.com/doi/abs/10.1271/bbb.100213.

M. T. Navarro-Gochicoa, S. Camut, A. C. J. Timmers, A. Niebel, C. Hervé, E. Boutet et al. “Characterization of four lectin-like receptor kinases expressed in roots of Medicago truncatula. Structure, location, regulation of expression, and potential role in the symbiosis with Sinorhizobium meliloti,” Plant Physiology, 2003; 133: 1893-910.

K. Nishiyama, Y. Yamamoto, M. Sugiyama, T. Takaki, T. Urashima, S. Fukiya et al. “Bifidobacterium bifidum Extracellular Sialidase Enhances Adhesion to the Mucosal Surface and Supports Carbohydrate Assimilation,” mBio, 2017 Sep-Oct; 8(5): e00928-17, DOI: 10.1128/mBio.00928-17.

N. M. Sanabria, H. van Heerden, and I. A. Dubery. “Molecular characterisation and regulation of a Nicotiana tabacum S-domain receptor-like kinase gene induced during an early rapid response to lipopolysaccharides,” Gene 2012;501(1):39-48, DOI: 10.1016/j.gene.2012.03.073.

S. Perez, A. Rivet, and A. Imberty. “3D-Lectin Database,” Published 24 May 2014. Springer-Verlag Berlin Heidelberg 2014, http://www.springerreference.com/index/chapterdbid/394894.

K. Regulski, P. Courtin, S. Kulakauskas, and M. P. Chapot-Chartier. “A novel type of peptidoglycan-binding domain highly specific for amidated D-Asp cross-bridge, identified in Lactobacillus casei bacteriophage endolysins,” Journal of Biological Chemistry (JBC), 2013; 288 (28): 20416-26, DOI: 10.1074/jbc.M112.446344.

N. J. Roberts, G. Morieri, G. Kalsi, A. Rose, J. Stiller, A. Edwards, F. Xie, P. M. Gresshoff, G. E. D. Oldroyd, J. A. Downie, and M. E. Etzler. “Rhizobial and mycorrhizal symbioses in Lotus japonicus require lectin nucleotide phosphohydrolase, which acts upstream of calcium signaling,” Plant Physiology, 2013; 161 (1): 556-67, DOI: 10.1104/pp.112.206110.

N. Sharon, and H. Lis. Lectins, Second Edition, Kluwer Academic Publishers, Dordrecht, 2003: 450 pp.

B. Shenderov. “Functional nutrition and its role in prophylactics of metabolic syndrome,” DeLi print, Moscow, 2008: 246-9 (in Russian).

B. A. Shenderov, A. V. Sinitsa, M. M. Zakharchenko, and C. Lang. “Metabiotics: Present state, challenges and perspectives,” Springer International Publishing, 2020: 136 pp, DOI 10.1007/978-3-030-34167-1, ISBN: 978-3-030-34167-1.

A. Sidar, E. D. Albuquerque, G. P. Voshol, A. F. J. Ram, E. Vijgenboom, and P. J. Punt. “Carbohydrate Binding Modules: Diversity of Domain Architecture in Amylases and Cellulases From Filamentous Microorganisms,” Frontiers in Bioengineering and Biotechnolog, 2020 Jul 31; 8: 871, DOI: 10.3389/fbioe.2020.00871.

I. N. Sin, M. A. Perini, G. A. Martínez, and P. M. Civello. “Analysis of the carbohydrate-binding-module from Fragaria x ananassa α-L-arabinofuranosidase 1,” Plant Physiology and Biochemistry, 2016; 107: 96-103. DOI: 10.1016/j.plaphy.2016.05.028.

E. L. Summers, C. D. Moon, R. Atua, and V. L. Arcus. “The structure of a glycoside hydrolase 29 family member from a rumen bacterium reveals unique, dual carbohydrate-binding domains,” Acta Crystallographica Section F: Structural Biology Communications, 2016; 72 (Pt 10): 750–61, DOI: 10.1107/S2053230X16014072.

S. T. Tran, D. T. Le, Y. C. Kim, M. Shin, and J. D. Choi. “Cloning and characterization of phosphomannose isomerase from Sphingomonas chungbukensis DJ77,” Biochemistry and Molecular Biology Reports (BMB Rep, Korean Society for Biochemistry and Molecular Biology), 2009; 42 (8): 523-8, https://www.pubfacts.com/detail/19712590/Cloning-and-characterization-of-phosphomannose-isomerase-from-Sphingomonas-chungbukensis-DJ77.

C. Val-Cid, X. Biarnés, M. Faijes, and A. Planas. “Structural-Functional Analysis Reveals a Specific Domain Organization in Family GH20 Hexosaminidases,” PLoS One, 2015 May 29; 10 (5): e0128075. DOI: 10.1371/journal.pone.0128075.

I. Venditto, S. Najmudin, A. S. Luís, L. M. A. Ferreira, K. Sakka, J. P. Knox et al. “Family 46 Carbohydrate-binding Modules Contribute to the Enzymatic Hydrolysis of Xyloglucan and beta-1,3-1,4-Glucans through Distinct Mechanisms,” Journal of Biological Chemistry (JBC), 2015; 290 (17): 10572-86, DOI: 10.1074/jbc.M115.637827.

M. Waespy, T. T. Gbem, L. Elenschneider, A. P. Jeck, C. J. Day, L. Hartley-Tassell et al. “Carbohydrate Recognition Specificity of Trans-sialidase Lectin Domain from Trypanosoma congolense,” PloS Neglected Tropical Diseases, 2015 Oct 16; 9 (10): e0004120, DOI: 10.1371/journal.pntd.0004120.

T. Wakinaka, M. Kiyohara, S. Kurihara, A. Hirata, T. Chaiwangsri, T. Ohnuma, T. Fukamizo, T. Katayama, H. Ashida, and K. Yamamoto. “Bifidobacterial alpha-galactosidase with unique carbohydrate-binding module specifically acts on blood group B antigen,” Glycobiology, 2013; 23 (2): 232-40. DOI: 10.1093/glycob/cws142.

K. Yamamoto, and Y. Tamaru. “A Noncellulosomal Mannanase26E Contains a CBM59 in Clostridium cellulovorans,” BioMed Research International, 2014; 2014: 438787, DOI: 10.1155/2014/438787.

Y. Yoshida. “F-box proteins that contain sugar binding domains,” Bioscience, Biotechnology and Biochemistry, 2007; 71 (11): 2623-31, https://www.elibrary.ru/contents.asp?id=33449315.

Y. Yoshida. “Lectin-Type Ubiquitin Ligase Subunits: Fbs Proteins and Their Applications for Use,” Methods in Molecular Biology, 2020; 2132: 215-24, DOI: 10.1007/978-1-0716-0430-4_22.

M. Zámocký, S. Janeček, and C. Obinger. “Fungal Hybrid B heme peroxidases – unique fusions of a heme peroxidase domain with a carbohydrate-binding domain,” Scientific Reports, 2017 Aug 24; 7 (1): 9393, DOI:10.1038/s41598-017-09581-8.

G. Zhao, G. Li, X. Zhou, I. Matsuo, Y. Ito, W. J. Lennarz, and H. Schindelin. “Structural and mutational studies on the importance of oligosaccharide binding for the activity of yeast PNGase,” Glycobiology, 2007; 19: 118-25.

Y. Zhang, H. Yang, X. Yu, H. Kong, J. Chen, H. Luo et al. “Synergistic effect of acetyl xylan esterase from Talaromyces leycettanus JCM12802 and xylanase from Neocallimastix patriciarum achieved by introducing carbohydrate-binding module-1,” AMB Express, 2019; 9: 13, DOI: 10.1186/s13568-019-0740-6.

##plugins.themes.bootstrap3.article.details##

How to Cite
Lakhtin, V. M., Lakhtin, M. V., Davydkin, V. Y., Melikhova, A. V., Davydkin, I. Y., & Zhilenkova, O. G. (2021). Enzybiotics with Lectin Properties and Lectinbiotics with Enzyme Activities – Multifunctional Modulators of Communications in Organism: Fundamentals and Unlimited Potential in Food Industry, Biosensors and Medicine. European Journal of Biology and Biotechnology, 2(1), 38-46. https://doi.org/10.24018/ejbio.2021.2.1.150