Response of the Leek (Allium porrum)-Mycorrhizal Fungus Symbiosis to Cutting Levels, Light Exposure and Seedling Density

##plugins.themes.bootstrap3.article.main##

  •   G. Nowo Nekou

  •   A.-M. Sontsa-Donhoung

  •   . Hawaou

  •   M. Bahdjolbe

  •   R. Tobolbaï

  •   D. Nwaga

Abstract

This work aims to assess the leek-arbuscular fungus symbiosis response to the effect of cutting and light exposure on the one hand, and the impact of seedling density on this symbiosis on the other hand. Allium Porrum was grown in a container in two different trials. Four species of arbuscular mycorrhizal fungi, Glomus hoi, Scutellospora gregaria, Rhizophagus intraradices and Gigaspora margarita were used to constitute the mycorrhizal inoculum. After 150 days of growth and inoculation, a series of cuts were made on the aerial part (0% = zero cut, 50% = half cut, 100% = whole cut). Plants that had undergone these treatments were placed in shade and sun for 30 days. The leek density per bag was varied by the order of 1, 2, 3 and 4 plant (s) by the pocket density test. Results showed that for 0% of cut in the shade, the vesicle occurrence decreases from 83.33% to 52.22%, and from 90% to 25.5% for 50% of cut in the shade. On the other hand, there is a significant increase in intra-root spores for a complete cut compared to other levels of cuts. For extra-root sporulation, under light, cuts have a negative and weak effect (from -11 to -3%) while in the absence of light, cuts have significant positive effects (from +16 to +61%). Regarding seedling density, the best root colonization (90%) and biomass production (14 g) are obtained with three plants per pot, but it is rather with a density of two plants per pot that extra-root sporulation is higher (153 spores/g). Variation in light, cut level and density significantly affects the development of mycorrhizal fungi.


Keywords: leek, mycorrhizae, cut, light, density.

References

B. Wang, and Y. Qiu, “Phylogenetic distribution and evolution of mycorrhizas in land plants,” Mycorrhiza, vol. 16, pp. 299-363, May 2006. https://doi.org/10.1007/s00572-005-0033-6.

S.E. Smith, and D.J. Read, Mycorrhizal symbiosis, Third edition, Academic Press, Great Britain, 2008, pp. 11-145. https://doi.org/10.1016/B978-012370526-6.50007-6.

D. Nwaga, W.L. Nana, M.E.L. Ngonkeu, N.A. Onguene, N.S. Tchameni, A. Maimouna, M.E.C. Mvele, J.F. Mayoh, V.P. Mbouapougnigni, R. Ngoumé, Valorisation des Fonctions Multiples des Champignons Mycorhiziens Arbusculaires pour la Production Agricole In: Duponnois R., Hafidi M., Ndoye I., Ramanankierana H., Amadou M. B. (eds). Des Champignons Symbiotiques Contre la Désertification des Ecosystèmes Méditerranéens, Tropicaux et Insulaires. Institut de Recherche pour le Développement, Marseille, France, 2013, pp. 156-176.

D. Nwaga, B. Mbarga, E.H. Biye, E.R. Atangana, et M.E.L. Ngonkeu, Diversité des Mycorhizes Arbusculaires et Biomasse Microbienne du Sol de Forêts Denses Humides du Cameroun : Effets des Systèmes d’Utilisation des Terres. Annuaire de la Faculté des Sciences de l’Université de Yaoundé I, Cameroun, vol 2, pp. 18-27, 2003.

D. Nwaga, J. Jansa, A.M. Abossolo, and E. Frossard, “The potential of soil beneficial microorganisms for slash-and-burn agriculture in the humid forest zone of sub-saharan Africa,” In: soil biology and agriculture in the tropics, Ed Dion P. Springer Heidelberg Dordrecht. London, New York, 2010, pp. 80-107. https://doi.org/10.1007/978-3-642-05076-3_5.

Z.A. Siddiqui, et R. Kataoka, “Mycorrhizal inoculants: progress in inoculant production technology,” In: microbes and microbial technology: agricultural and environmental applications, Ahmad et al. (eds.), Springer, New York, 2011, pp. 491-494. https://doi.org/10.1007/978-1-4419-7931-5_18.

J.C. Dodd, C.L. Boddington, A. Rodriguez, C. Gonzalez-Chavez, I. Mansur.” Mycelium of arbuscular mycorrhizal fungi (AMF) from different genera: form, function and detection.” Plant Soil, vol. 226, pp. 131-151, November 2000. https://doi.org/10.1023/A:1026574828169.

S. Timonen, F.A. Smith, S.E. Smith. “Microtubules of mycorrhizal fungus Glomus intraradices in symbiosis with tomato roots.” Canadian Journal of Botany, vol. 79, pp. 307-313, March 2001. https://doi.org/10.1139/b01-005.

V. Gadkar, and A. Adholeya, “Intraradical sporulation of AM Gigaspora margarita in long-term axenic cultivation in Ri T-DNA carrot root.” Mycological Research, vol. 104, No. 6, pp. 716–721, June 2000. https://doi.org/10.1017/S0953756299002312.

P. Chellappan, S.A.A. Christy, and A. Mahadevan, “Multiplication of arbuscular mycorrhizal fungi on roots,” In: Techniques in Mycorrhizal Studies, Mukerji, K.G., Manoharachary, C., Chamola, B.P. (eds.), Kluwer Academic Publishers, The Netherlands, 2001, pp. 285–297. https://doi.org/10.1007/978-94-017-3209-3_15.

D.J. Bagyaraj, “Mycorrhizal association in plants,” In: Manual of Mycorrhiza Technology, D.J. Bagyaraj, A Manjunath, (eds.), University of Agriculture Sciences, Bangalore, India, 1992.

[12] K. Tawaraya, “Arbuscular mycorrhizal dependency of different plant species and cultivars,” Soil Science and Plant Nutrition, vol. 49, no 5, pp. 655-668, November 2003. https://doi.org/10.1080/00380768.2003.10410323.

A. Destinoble, “Effet de la Symbiose Mycorhizienne Arbusculaire sur la Composition Minérale du Poireau Cultivé en Présence de Carbonate de Calcium”. Mémoire de Maitrise, Universite Laval, Québec, Canada, 2017.

S.T. Okiobé, M. Abossolo Angue, B.P. Bougnom, Boyomo Onana, D. Nwaga, “Improvement of arbuscular mycorrhizal fungi inoculum production by nutrient solution concentration and soil texture variation,” International Journal of Agronomy and Agricultural Research, vol 6, no 5, pp. 7-20, April 2015.

P.P. Kormanik, and A.C. Mc graw, “Quantification of vesicular-arbuscular Mycorrhizae in plant roots,” In: Shenk N.C. (ed). Methods and principles of mycorrhizal research, The American Phytopathological Society, St Paul, MN., 1982, pp. 37-45.

N.C. Schenck, and Y. Perez, “Manual for the identification of VA mycorrhizal fungi”3rd ed., Synergistic Publication, Gaines ville, Florida, USA, 1982, pp. 45-57.

S. Bazot, “Contribution à l'Etude de l’Allocation des Photoassimilats Récents dans la Plante et la Rhizosphère chez une Graminée Pérenne (Lolium perenne L.),” Thèse de Doctorat, Institut National Polytechnique de Lorraine, Lorraine, France, 2005.

Hawaou, “Lutte Contre les Bio-agresseurs pour la Production de l’Oignon (Allium cepa L.) à partir des Microorganismes Bénéfiques : Champignons Mycorhiziens et Agent de Bio Contrôle,” Mémoire de Master, Département de Microbiologie, Université de Yaoundé I, Yaoundé, Cameroun, 2018.

M.J Daft, and A.A. Elgiahmi, “Effects of defoliation light on selected hosts” New Phytologist, vol. 80, pp. 365-372, March 1978. https://doi.org/10.1111/j.1469-8137.1978.tb01570.x.

C. Zeng, J.B. Zhang, F. Zhang, and J.D. Bever, “Shading decreases plant carbone preferencial allocation towards the most beneficial mycorrhizal mutualist,” New Phytologist, Vol. 205, pp. 361-368, July 2015. https://doi.org/10.1111/nph.13025.

S. Adamou, R. Fokom, M.S. Mandou, V. Mbouapouognigni, A. Ngakou, and D. Nwaga, “Functional diversity of five species of arbuscular mycorhizal fungi in symbiosis with Allium cepa L,” IOSR Journal of Agriculture and Veterinary Sciences, vol. 12, no 2, pp. 01-08, February 2019.

D. Xiao, Y. Tan, X. Liu, R. Yang, W. Zhang, W., X. He, K. Wang, “Effects of different legume species and densities on arbuscular mycorrhizal fungal communities in a karst grassland ecosystem,” Science of the Total Environment, vol. 678, pp. 551–558, May 2019. https://doi.org/10.1016/j.scitotenv.2019.04.293.

K. Saito, Y. Suyama, S. Sato, and K. Sugawara, “Defoliation effects on the community structure of arbuscular mycorrhizal fungi based on 18S rDNA sequences,” Mycorrhiza, vol. 14, no 6, pp. 363–373, January 2004. https://doi.org/10.1007/s00572-003-0286-x.

A. Pietikainen, and M.-M. Kytoviita, “Defoliation changes mycorrhizal benefit and competitive interactions between seedlings and adult plants,” Journal of Ecology, vol. 95, pp. 639-647, May 2007. https://doi.org/10.1111/j.1365-2745.2007.01257.x.

M. IJdo, N. Nicolas Schtickzelle, S. Cranenbrouck, and S. Declerck, “Do arbuscular mycorrhizal fungi with contrasting life-history strategies di¡er in their responses to repeated defoliation?” FEMS Microbiology Ecology, vol. 72, pp. 114–122, April 2010. https://doi.org/10.1111/j.1574-6941.2009.00829.x.

A.R. Kula, D. C. Hartnett, and G. W. T. Wilson, “Effects of mycorrhizal symbiosis on tallgrass prairie plant-herbivore interactions” Ecology Letters, vol. 8, no 1, pp. 61–69, December 2004. https://doi.org/10.1111/j.1461-0248.2004.00690.x.

D.B. Bahabege, “Impact de l’Allocation du Carbone sur la Symbiose poireau (Allium porrum L.) -Champignons Mycorhyziens : Densité du Semis et Coupe”, Mémoire de Master, Département de Biologie des Organismes Végétaux, Université de Yaoundé I, Yaoundé, Cameroun, 2017.

M.B. McHaffie, and H. Maherali, “Variation in mycorrhizal growth response influences competitive interactions and mechanisms of plant species coexistence,” Oecologia, vol. 192, pp. 755–765, January 2020. https://doi.org/10.1007/s00442-020-04609-9.

##plugins.themes.bootstrap3.article.details##

How to Cite
Nowo Nekou, G., Sontsa-Donhoung, A.-M., Hawaou, ., Bahdjolbe, M., Tobolbaï, R., & Nwaga, D. (2021). Response of the Leek (Allium porrum)-Mycorrhizal Fungus Symbiosis to Cutting Levels, Light Exposure and Seedling Density. European Journal of Biology and Biotechnology, 2(3), 1-6. https://doi.org/10.24018/ejbio.2021.2.3.184