Multi-Drug Resistance Genes associated with Some Gram-Negative Bacterial Isolated from Shellfish in Iko and Douglas River Estuaries in Nigeria


  •   Nsikan Samuel Udoekong

  •   Bassey Enya Bassey

  •   Anne E. Asuquo

  •   Otobong Donald Akan

  •   Casmir Ifeanyichukwu Cajetan Ifeanyi


Background: Multi drug resistant bacterial agents that contaminate seafood cause several diseases in humans and are widely documented as a global public health challenge.

Methods: This study evaluated the microbiological and antimicrobial resistance genes profiles of bacterial Isolates from shellfish vended at Iko and Douglas Creeks of Cross River State, Nigeria. A total of 540 shellfish (117 clams, 88 oysters, 136 periwinkles) samples were collected from various vendor at the two Creeks were analyzed. The samples were processed using standard microbiological methods to identify bacterial pathogens. Antimicrobial susceptibility was assayed using the Kirby-Bauer disk diffusion method. Isolates were screened for antimicrobial resistant genes using polymerase chain reaction.

Results: Overall, a total of 135 bacteria isolates were identified. The most common isolate was Alcaligenes species 53(39.2%) followed by Pseudomonas species 44(32.6%), Providencia species 25(18.5%), Vibrio species 6(4.4%), and Paenalcaligenes species 7(5.2%). The isolates showed varying susceptibilities to Imipenem (36%) and amikacin (28%) but were all resistant to Trimethoprim-Sulfamethoxazole. Fifty-three isolates had a multiple antibiotic resistance index (MARI) of ≥0.9 - 1.0. Most of the bacterial isolates were detected with TEM genes (82.2%), SHV (51.8%,), VIM (50.3%) resistance genes. None of the isolates expressed Veb gene. Only 40.7% of the isolates expressed QnrB gene while none expressed QnrA and QnrS.

Conclusion: The detection of these multidrug resistant clinically relevant bacterial species suggests a significant linkage of commonly consumed seafood in the community and environmental spread of MDR bacteria.

Keywords: Shellfish, aminoglycoside, MARI, phenotypic, Gram-negative bacteria, PCR


El-Sayed, M. H. (2019). Occurrence of Multi-drug Resistant Bacteria in Some Selected Street Food Samples. Journal of Pharmaceutical Research International, 31(1), 1-8.

WHO (2020).

Algammal, A. M., Mabrok, M., Sivaramasamy, E. Youssef, Fatma M., Atwa, Mona H., El-kholy, Ali W., Hetta, Helal F., Hozzein, Wael N. (2020). Emerging MDR-Pseudomonas aeruginosa in fish commonly harbor oprL and toxA virulence genes and blaTEM, blaCTX-M, and tetA antibiotic-resistance genes. Sci Rep 10, 15961.

Hembach, N.; Schmid, F.; Alexander, J.; Hiller, C.; Rogall, E.T.; Schwartz, T. (2017). Occurrence of themcr-1colistinresistance gene and other clinically relevant antibiotic resistance genes in microbial populations at different municipal wastewater treatment plants in Germany. Front. Microbiol., 8, 1282. [CrossRef] [PubMed].

De Kraker MEA, Stewardson AJ, Harbarth S (2016) Will 10 Million People Die a Year due to Antimicrobial Resistance by 2050? PLoS Med 13(11): e1002184.

Woolhouse, M. Antimicrobial resistance in humans, livestock and the wider environment. J. High Energy Phys. 2015, 6, 1575–1589. [Google Scholar] [CrossRef] [PubMed].

Leonard, A.F.C.; Zhang, L.; Balfour, A.J.; Garside, R.; Gaze, W.H. Human recreational exposure to antibiotic resistant bacteria in coastal bathing waters. Environ. Int. 2015, 82, 92–100. [Google Scholar] [CrossRef] [PubMed].

Xu, Y.; Guo, C.; Luo, Y.; Lv, J.; Zhang, Y.; Lin, H.; Wang, L.; Xu, J. Occurrence and distribution of antibiotics, antibiotic resistance genes in the urban rivers in Beijing, China. Environ. Pollut. 2016, 213, 833–840. [Google Scholar] [CrossRef] [PubMed].

Bassetti M, Peghin M, Vena A and Giacobbe DR (2019) Treatment of Infections Due to MDR Gram-Negative Bacteria. Front. Med. 6:74. doi: 10.3389/fmed.2019.00074).

Pérez-Etayo L, González D, Leiva J, Vitas AI. (2020). "Multidrug-Resistant Bacteria Isolated from Different Aquatic Environments in the North of Spain and South of France" Microorganisms 8, no. 9: 1425.

Preena, P.G.; Arathi, D.; Raj, N.S.; Kumar, T.V.A.; Raja, S.A.; Reshma, R.N.; Swaminathan, T.R. Diversity of antimicrobial-resistant pathogens from a freshwater ornamental fish farm. Lett. Appl. Microbiol. 2019, 71, 108–116.

Guo, M.T.; Yuan, Q.-B.; Yang, J. (2013) Microbial selectivity of UV treatment on antibiotic-resistant heterotrophic bacteria in secondary effluents of a municipal wastewater treatment plant. Water Res.,47, 6388–6394. [CrossRef].

Hariharan, H. & Amadi, V. Shellfish as reservoirs of bacterial pathogens. Journal of Coastal Life Medicine, 2016; 4(4): 253-258.

Nijsingh, N., Munthe, C., Lindblom, A., Åhrén, C. (2020). Screening for multi-drug-resistant Gram-negative bacteria: what is effective and justifiable?. Monash Bioeth. Rev. 38, 72–90 (2020).

Bosch, T., S.P. Lutgens, M.H. Hermans, P.C. Wever, P.M. Schneeberger, N.H. Renders, and S. Witteveen. 2017. Outbreak of NDM-1-producing Klebsiella pneumoniae in a Dutch hospital, with interspecies transfer of the resistance plasmid and unexpected occurrence in unrelated health care centers. Journal of Clinical Microbiology 55 (8): 2380–2390.

Lindblom, A., K.K. Sriram, V. Müller, R. Öz, H. Sandström, C. Åhrén, and N. Karami. 2019. Interspecies plasmid transfer appears rare in sequential infections with extended-spectrum β-lactamase (ESBL)-producing Enterobacteriaceae. Diagnostic Microbiology and Infectious Disease 93 (4): 380–385.

Zeinab Breijyeh, Buthaina Jubeh, Rafik Karaman Resistance of Gram-Negative Bacteria to Current Antibacterial Agents and Approaches to Resolve It. Molecules. 2020 Mar; 25(6): 1340. Published online 2020 Mar 16. doi: 10.3390/molecules25061340.

Ruppé, E.; Woerther, P.-L.; Barbier, F. Mechanisms of antimicrobial resistance in Gram-negative bacilli. Ann. Intensiv. Care2015,5, 61Breijyeh Z, Jubeh B, Karaman R. Resistance of Gram-Negative Bacteria to Current Antibacterial Agents and Approaches to Resolve It. Molecules. 2020; 25(6):1340.

Wamala, S.P., Mugimba, K.K., Mutoloki, S Evensen, O., Mdegela, R., Byarugaba, D. K., Sorum, H. (2018). Occurrence and antibiotic susceptibility of fish bacteria isolated from Oreochromis niloticus (Nile tilapia) and Clarias gariepinus (African catfish) in Uganda. Fish Aquatic Sci 21, 6 (2018).

Sanjit Singh, Asem; Lekshmi, Manjusha; Prakasan, Sreepriya; Nayak, Binaya B.; Kumar, Sanath. 2017. "Multiple Antibiotic-Resistant, Extended Spectrum-β-Lactamase (ESBL)-Producing Enterobacteria in Fresh Seafood" Microorganisms 5, no. 3: 53.

Das, U.N., Singh, A.S., Lekshmi, M. et al. Characterization of blaNDM-harboring, multidrug-resistant Enterobacteriaceae isolated from seafood. Environ Sci Pollut Res 26, 2455–2463 (2019).

Stanton, I.C., Bethel, A., Leonard, A.F.C. et al. What is the research evidence for antibiotic resistance exposure and transmission to humans from the environment? A systematic map protocols. Environ Evid 9, 12 (2020).

Md Anwarul Azim Majumder, Sayeeda Rahman, Damian Cohall, Ambadasu Bharatha, Keerti Singh, Mainul Haque, and Marquita Gittens-St Hilaire. Antimicrobial Stewardship: Fighting Antimicrobial Resistance and Protecting Global Public Health. Infect Drug Resist. 2020; 13: 4713–4738.

Tawari, C. C. & Davies, O. Effectiveness of agricultural agencies in fisheries production and management in Niger Delta, Nigeria. Ozean Journal of Applied Sciences, 2009; 2(4).

ISO, 6579 Microbiology 4th Ed. General guidance on methods for the detection ofSalmonella. Geneva, Switzerland: International Organization for Standardization, 2003; 1-122.

Farmer, J. J., Janda, M., Brenner, F. W., Cameron, D. N., Brikhead, K. M. & Genus, I. Vibrio pacini1854, 411AL. In: Brenner, D. J., Kreig, N. R., Staley, J. T. (Eds.). Bergey’s Manual of Systemic Bacteriology. The Proteobacteria, Part B. The Gammaproteo Bacteriria, 2nd Edn. New York: Springer, 2005; 2, 494-546.

Cheesbrough, M. District laboratory practices in tropical countries, Part II. United Kingdom: Cambridge University Press, 2002;182-187.

MacFaddin, J.F. (2000) Biochemical Tests for Identification of Medical Bacteria. 3rd Edition, Lippincott Williams & Wilkins, Philadelphia.

Conlan S, Kong HH, Segre JA (2012) Species-Level Analysis of DNA Sequence Data from the NIH Human Microbiome Project. PLoS ONE 7(10): e47075.

Fallah, H. S., Asgharpour, F., Naderian, Z. & Moulana, Z. Isolation and determination of antibiotics resistance patterns in non-typical Salmonella species isolated from chicken. International Journal of Enteric Pathogens, 2013; 1(1):17-21.

Weinstein, M.P., Patel, J. B., Campeau, S., Conville, P., Doern, C., Eliopolus, G.M., Galas, M.F., Humphries, R.M., Jenkins, S.G., Kircher, S.M. & Lewis, J.S. Performance standard for antimicrobial disk susceptibility tests (13th Edn). Clinical Laboratory Standards Institute 2018; standard M02.

Mafu, N. C., Pironcheva, G. & Okoh, A. I. Genetic diversity and in vitro antibiotic susceptibilitysources in the Eastern Cape province of South Africa. African Journal of Biotechnology, 2009;8, 1263-1269.

Dashti, A.A., Jadaon, M.M., Abdulsamand, A.M., Dashti, H. Heat treatment of bacteria: A simple method of DNA extraction for molecular techniques. Journal of the Kuwait Medical Association (2009); 41(2).

Berendonk, T. U., Manaia, C. M., Merlin, C., Fatta-Kassinos, D., Cytryn, E., Walsh,F., et al. (2015). Tackling antibiotic resistance: the environmental framework.Nat. Rev. Microbiol.13, 310–317. doi: 10.1038/nrmicro3439.

Omoya F. O. and Ajayi A. T. (2020). Assessment of the microbial quality of seafood and effects of salt concentration and temperature on isolated microorganisms, Journal of Microbiology and Antimicrobials, Vol.12(1), pp. 17-31,

Brisabois A, Svanevik C, Price-Hayward M, Valeria Bortolaia V, Leoni F, Sophie Granier S, Mario Latini M, Chiara Francesca Magistrali CF, Lunestad B, Peyrat M, (2019). ASK network for antimicrobial resistance in seafood as common ground for knowledge exchange, Research Report, pp.1-36 HAL Id: anses-02437102, Available:

Xinjie S, Jinlin Z, Weisen Y, Xuexiang S, Yongning W (2020). Occurrence and Identification of Pathogenic Vibrio Contaminants in Common Seafood Available in a Chinese Traditional Market in Qingdao, Shandong Province, Frontiers in Microbiology 11: 1488, DOI=10.3389/fmicb.2020.01488.

Afolayan O.A., Moruf R.O. and Lawal-Are A.O. (2020). Bacterial contamination and heavy metal residues in frozen shellfish retailed within Lagos Metropolis, Nigeria Science World Journal, Vol. 15 (No 1) 11-14.

Serweci ́nska L. (2020). Antimicrobials and Antibiotic-Resistant Bacteria:A Risk to the Environment and to Public Health, Water 2020, 12, 3313; doi:10.3390/w12123313.

Jechalke, S.; Heuer, H.; Siemens, J.; Amelung, W.; Smalla, K. Fate and effects of veterinary antibiotics in soil.Trends Microbiol. 2017, 22, 536–545.

Amadi, V.A., Peterson, R., Mathew-Belmar, V., Sharma, R. & Hariharan, H. Prevalence and antibiotic susceptibility of Gram-negative aerobic bacteria cultured from the intestine and hepatopancreas of blue land crab (Cardisomaguanhumi) in Grenada, West Indies, British Microbiological Resources Journal, 2015; 5, 169-179.

Rodriguez, A. I., Hariharan, H. & Nimrod, S. Occurrence and antimicrobial drug resistance of potential bacterial pathogens from shellfish, including conchs (Strombusgigas) and whelks (Cittarium pica) in Grenada Webmed Central Microbiology, 2011; 2(5): WMC001 943.

Livermore, D. M., Sefton, A. M. & Scott, G. M. Properties and potential of Ertapenem. Journal of Antimicrobial chemotherapy, 2003; 52, 331-334.

Perez, F. & Van, D. D. Carbapenem-resistant Enterobacteriaceae: A menace to our most vulnerable patients. Cleveland Clinic Journal of Medicine 2013;80 (4): 225-233.

Lutgring, J.D. Carbapenem-resistant Enterobacteriaceae: An emerging bacterial threat. Semin. Diagn. Pathol. 2019, 36, 182–186.

Akinbowale, O. L., Peng, H. & Barton, M. D. Antimicrobial resistance in bacteria isolated from aquaculture sources in Australia. Journal of Applied Microbiology, 2006; 100(5).

Sudha, S., Abdulla, M.H. & Silvester, R. Prevalence and antibiotic resistance of pathogenic Vibrios in shellfishes from Cochin market. Indian Journal of Geo-Marine Sciences, 2014; 43(5): 815-824.

Haenen, O. L., Evans, J. J. & Berthe, F. Bacterial infections from acquatic species: potential for and prevention of contact zoonoses. Revue Scientifique et Technique, 2013; 32, 497-507.

Letchumanan, V., Pusparajah, P., Tan, L. T., Yin, W., Lee, L. & Chan, K. Occurrence and Antibiotic Resistance of Vibrio parahaemolyticus from shellfish in Selangor, Malaysia. Frontiers of Microbiology, 2015; 6, 1417-1435.

Singh, A. S., Lekshmi, M., Prakasan, S., Nayak, B. B. & Kumar, S. Multiple Antibiotic-Resistant, Extended Spectrum β-Lactamase (ESBL)-Producing Enterobacteria in Fresh Seafood. Microorganisms, 2017; 5, 53-63.

Walsh, T.R. & Toleman, M.A. The emergence of pan-resistant Gram-negative pathogens merits a rapid global political response. Journal of Antimicrobial Chemotherapy, 2012; 67, 1-3.

Lery, S. B. How misuse of antibiotics destroys their curative powers. The Antibiotic Paradox. UK: Oxford University Press, 2002; pp. 39-41.

Riaz, S., Faisal, M. & Hasnain, S. Antibiotic susceptibility pattern and multiple antibiotic resistance (MAR) calculation of extended-spectrum β-lactamase (ESBL) producing Escherichia coli and Klebsiella species in Pakistan. African Journal of Biotechnology, 2011; 10, 6325-6331.

Olayinka, A.T., Olayinka, B.O & Onile, B.A. Antibiotic susceptibility and plasmid pattern of Pseudomonas aeruginosa from the surgical unit of a University teaching hospital in North-central Nigeria, International Journal of Medical Science, 2009; 1, 079-083.

Solomon, L., Ogugbue, C. J. & Okpokwasili, G. C. Antibiotic Resistance Profiles of Bacteria Associated with Fresh and Frozen Shrimp (Palaemonetes sp.) and Their Public Health Significance. International Journal of Scientific Research in Knowledge (IJSRK), 2013; 1(10): 448-456.

Bradford, P. A. Extended-Spectrum β-lactamases in the 21st century. Characterization, epidemiology and detection of this important resistance threat. Clinical Microbiology Review, 2001; 48, 933-951.

Eja, M. E., Udoekong, N. S., Ikpeme, E. M. & Enyi-Idoh, K. H. Antibiogram studies and extended-spectrum beta-lactamase activity profile of Salmonella-like species isolated from poultry soil of the University of Uyo, Nigeria. Malaysian Journal of Microbiology, 2012; 8(4): 280-284.

Jacoby, G. A., Strahilevitz, J. & Hooper, D. C. Plasmid-mediated quinolone resistance. Microbiology Spectrum, 2014; 2(5): PLAS-006-2013.

Yugendran, T. & Harish, B. N. High incidence of plasmid-mediated quinolone resistance genes among ciprofloxacin-resistant clinical isolates of Enterobacteriaceae at a tertiary care hospital in Puducherry, India 2016; Peer J, 4: e1995.

Wu, J. J., Ko, W. C., Tsai, S. H. & Yan, J. J. Prevalence of plasmid-mediated quinolone resistance determinants QnrA, QnrB, and QnrS among clinical isolates of Enterobactercloacae in a Taiwanese hospital. Antimicrobial Agents and Chemotherapy, 2007; 51, 1223-1227.

Yang, H., Chen, H., Yang, Q., Chen, M. & Wang, H. High prevalence of plasmid-mediated quinolone resistance genes qnr and aac(6’)-Ib-cr in clinical isolates of Enterobacteriaceae from nine teaching hospitals in China. Antimicrobial Agents and Chemotherapy, 2008; 52, 4268-4273.

Zafer, M. M., Al-Agamy, M. H., El-Mahallawy, H. A., Amin, M. A. & Ashour, M. S. E. Antimicrobial Resistance Pattern and their Beta-Lactamase Encoding Genes among Pseudomonas aeruginosa strains isolated from cancer patients. BioMed Research International, 2014; 29: 80–81.


How to Cite
Udoekong, N., Bassey, B. E., Asuquo, A. E., Akan, O. D., & Ifeanyi, C. I. C. (2021). Multi-Drug Resistance Genes associated with Some Gram-Negative Bacterial Isolated from Shellfish in Iko and Douglas River Estuaries in Nigeria. European Journal of Biology and Biotechnology, 2(3), 19-27.