Antibiotic Susceptibility of Salmonella spp Isolated from Fresh Leafy Vegetables Samples by Using Culture and Polymerase Chain Reaction Methods

##plugins.themes.bootstrap3.article.main##

  •   S. E. Haramain

  •   S. O. Yagoub

  •   A. A. Osman

Abstract

Background: Microbial contamination continues to be one of the leading risks to food safety. Contaminated leafy green vegetables are the primary cause of infection among children, elderly, and immunocompromised people. The purposes of this work were to isolate and identify of Salmonella spp. in fresh leafy vegetables collected from Jeddah Central Market, Jeddah district, western area, kingdom of Saudi Arabia, estimated of the number and percentage of isolated Salmonella spp and determined the antimicrobial susceptibility of the isolated Salmonella spp.


Methods: Five-hundred samples were examined for the presence of Salmonella spp, by using standard microbiological and biochemical tests. Further, detection of Salmonella spp. was done by PCR with the primers targeting invA gene, a key factor for entry of Salmonella into epithelial cells. Susceptibility of the isolated Salmonella spp was done toward thirteen different antibiotics.


Results: The percentage of isolation of Salmonella spp was 1.2 % (06/500). It was isolated as (0.40%, 02/500) from Basil, (0.20%, 01/500) from Spinach, Rocket, Parsley and Chards. Two isolates (2/6, 33.3%) showed positive Salmonella invA gene (244 bp). All isolated Salmonella showed resistance to Cephalexin (30 µg/disc), Metronidazole (5 µg/disc) and Methicillin (5 µg/disc). 


Keywords: Salmonella spp, Food borne pathogens, Antimicrobial susceptibility, Salmonella invA gene

References

T. Osei, F. Anto. “Trends of reported foodborne diseases at the Ridge Hospital, Accra, Ghana: a retrospective review of routine data from 2009-2013”. BMC Infect Dis; 16(1): 139, 2016.

SE. Majowicz., J. Musto., E. Scallan., FJ. Angulo., M. Kirk., SJ. O. 'Brien., TF. Jones., A. Fazil., RM. Hoekstra. “The global burden of nontyphoidal Salmonella gastroenteritis”. Clin Infect Dis.; 50: 882–889. pmid:20158401, 2010.

M. Khiyami, N. Al-Faris, B. Busaeed, H. Sher. “Food borne pathogen contamination in minimally processed vegetable salads in Riyadh, Saudi Arabia”, J. Med. Plants Res.; 5(3): 444-451, 2011.

C. L. Baylis. “Manual of microbiological methods for the food and drinks industry. Campden & Chorleywood Food Research associate group (CCFRA), 5th edition”, ISBN: 9780905942933, 2007.

MA. Bisi-Johnson, CL. Obi. Escherichia coli and Salmonella species: Molecular landscape and therapeutic considerations: A review. Adv. Med. Sci. 1(1): 1-16, 2012.

D. Amicizia, L. Arata, F. Zangrillo, D. Panatto, R. Gasparini. “Overview of the impact of Typhoid and Paratyphoid fever. Utility of Ty21a vaccine (Vivotif®)”, J Prev Med Hyg.; 58 (1): E1-E8, 2017.

R. Hassan, S. Tecle, B. Adcock, M. Kellis, J. Weiss, A. Saupe, A. Sorenson, R. Klos, J. Blankenship, T. Blessington, L. Whitlock, HA. Carleton, C. J. Acevedo, B. Tolar, M. Wise., KP. Neil. “Multistate outbreak of Salmonella Paratyphi B variant L (+) tartrate(+) and Salmonella Weltevreden infections lin ked to imported frozen raw tuna: USA, March-July 2015”. Epidemiol Infect; 146(11): 1461-1467, 2018.

E. J. Threlfall. “Epidemic Salmonella Typhimurium DT 104-a truly international multiresistant clone”, Journal of Antimicrobial Chemotherapy 46: 7-10, 2000.

S. K. Greene, A. M. Stuar, F. M. Medalla, J. M. Whichard, R. M. Hoekstra and T. M. Chiller. “Distribution of multidrug-resistant human isolates of MDR-ACSSuT Salmonella Typhimurium and MDR-AmpC Salmonella Newport in the United States, 2003-2005”. Foodborne Pathogenic Diseases 5:669-680, 2008.

M. Chen, Y.Wang, L. H. Su and C. H Chiu. “Nontyphoid Salmonella infection: microbiology, clinical features, and antimicrobial therapy”. Pediatrics & Neonatology 54(3): 147-152, 2013.

J. Hoorfar, N. Cook. “Critical aspects in standardization of PCR. Methods”, Mol Biol.; 216: 51-64, 2003.

MA. Grant. “Evaluation of methods to improve detection of E. coli O157:H7 in fresh produce by multiplex polymerase chain reaction”. J Food Prot.; 66 (1): 18-24, 2003.

D. F. Waller, S.A. Ogata. “Quantitative immunocapture PCR assay for detection of Campylobacter jejuni in foods”. Applied and Environmental Microbiology 66, 4115–4118, 2000.

KG. Maciorowski, SD. Pillai, FT. Jones, SC. Ricke. “Polymerase chain reaction detection of foodborne Salmonella spp. in animal feeds”. Crit Rev Microbiol.; 31(1): 45-53, 2005.

NM. Abdel-Aziz, “Detection of Salmonella species in chicken carcasses using genus-specific primer belong to invA gene in Sohag city, Egypt”. Vet World; 9(10): 1125-1128, 2016.

K. Rahn, SA. De Grandis, RC. Clarke, SA. McEwen, JE. Galán, C. Ginocchio, R. Curtiss, CL. Gyles. “Amplification of an invA gene sequence of Salmonella typhimurium by polymerase chain reaction as a specific method of detection of Salmonella”. Mol Cell Probes; (4): 271-279, 1992.

Clinical Laboratory Standards Institute (CLSI). “Standards for antimicrobial disk susceptibility tests. Approved standard”. In Ninth edition Document M2-A9 Clinical and Laboratory Standards Institute, Wayne, PA. 2006.

B. Mehrad, NM. Clark, GG. Zhanel, JP. Lynch. “Antimicrobial resistance in hospital-acquired gram-negative bacterial infections”. Chest; 147(5): 1413-1421, 2015.

A.Chlebicz, K. Sliżewska. “Campylobacteriosis, Salmonellosis, Yersiniosis, and Listeriosis as Zoonotic Foodborne Diseases: A Review”. Int J Environ Res Public Health; 15 (5): 1-25, 2018.

M. Ejo, L. Garedew, Z. Alebachew, A. Worku. “Prevalence and antimicrobial resistance of Salmonella isolated from animal-origin food items in Gondar Ethiopia”. Biomed Res Int: Vol. 16 |Article ID 4290506 | https://doi.org/10.1155/2016/4290506, 2016.

M. Siala, A. Barbana, S. Smaoui, S. Hachicha, C. Marouane, S. Kammoun., R.Gdoura., F. MessadiAkrout, “Screening and detecting Salmonella in different food matrices in Southern Tunisia using a combined enrichment/real-time PCR method: Correlation with conventional culture method Front”. Microbiol. 8 2416 1-10, 2017.

D. Alsalah, N. Al-Jassim, K. Timraz, PY. Hong, “Assessing the Groundwater Quality at a Saudi Arabian Agricultural Site and the Occurrence of Opportunistic Pathogens on Irrigated Food Produce”. Int J Environ Res Public Health; 12 (10): 391-411, 2015.

Y. Jung, H. Jang, KR. Matthews. “Effect of the food production chain from farm practices to vegetable processing on outbreak incidence”. Microb Biotechnol, 7(6): 517-27, 2014.

M. Steele., J. Odumeru. “Irrigation water as source of foodborne pathogens on fruit and vegetables”. J Food Prot, 67(12): 2839-2849. 2004.

I. Isoken. “Biofilm formation of Salmonella species isolated from fresh cabbage and spinach”, J. Appl. Sci. Environ. Manage, Vol. 19(1), 45-50, 2015.

SN. Siourimè, BOJ. Isidore, T. Oumar, BIH. Nestor, T. Yves, B. Nicolas, S. Aly, “Serotyping and antimicrobial drug resistance of Salmonella isolated from lettuce and human diarrhea samples in Burkina Faso”. Afr J Infect Dis; 11 (2): 24-30, 2017.

##plugins.themes.bootstrap3.article.details##

How to Cite
Haramain, S. E., Yagoub, S. O., & Osman, A. A. (2021). Antibiotic Susceptibility of Salmonella spp Isolated from Fresh Leafy Vegetables Samples by Using Culture and Polymerase Chain Reaction Methods. European Journal of Biology and Biotechnology, 2(3), 41-45. https://doi.org/10.24018/ejbio.2021.2.3.199