Shea Shells and Press-Cake as New Sources of Bioactive Phenolic Compounds: GC MS Profile and in vitro Antioxidant Activity

##plugins.themes.bootstrap3.article.main##

  •   A. B. Kouakou

  •   G. G. Doué

  •   R.-M. Mégnanou

  •   A. E. S. Djoman

Abstract

Shea nuts shells and press cake are shea butter processing byproducts. Their content in phenolic bioactive compounds and their antioxidant capacity were studied. The total phenolic and flavonoid contents ranged between 16.962-21.395 mg GAE/100g DM and 0.243-1.83 mg QE/100g DM, for press-cake and shells, respectively. Antioxidant capacity values assessed by EC50 using DPPH, ABTS and FRAP methods were in the range of 0.398-0.235 mg/mL, 0.623-0.465 mg/mL and 0.137-0.154 mg/mL for shea press-cake and shells, respectively. Shea shells recorded the highest total phenolic and flavonoid compounds positively correlated with DPPH and ABTS radical scavenging. Catechins, arbutin and gallic acid were the most abundant phenolic compound identified by GC-MS chromatography with 10.4; 2.1 and 0.8 g/100 g in shea shells and 2.2; 2.6 and 2.6 g/100 g in press-cake. Based on this phenolic composition shea nuts shells and press cake could be of great importance in cosmetic and pharmaceutical industries, and also contribute to preventing metabolic and cardiovascular diseases.


Keywords: antioxidant activity, GC-MS chromatography, phenolic compounds, shea press-cake, shea shells

References

B. Halliwell, and J. M. Gutteridge, “The definition and measurement of antioxidants in biological systems,” Free Radic Biol Med, vol. 18(1), pp. 125–126, 1995.

B. Halliwell,“Dietary polyphenols: good, bad, or indifferent for your health?,” Cardiovasc Res, vol. 73(2), pp. 341-347, 2007.

T. M. Heikal, A. T. H. Mossa, G. I. K. Marei, and M. A. Abdel Rasoul, “Cyromazine and Chlorpyrifos Induced Renal Toxicity in Rats: The Ameliorating Effects of Green Tea Extract,” J Environ Anal Toxicol, vol. 2(1), pp. 146-152. 2012.

J. C. Espin, R. Gonzàlez-Barrio, B. Cerdà, C. Lòpez-Bote, A. I. Rey, and F. A. Tomàs-Barberàn, “Iberian pig as a model to clarify obscure points in the bioavailability and metabolism of ellagitannins in humans,” J Agric Food Chem, vol. 55, pp.10476–85, 2007.

F. Shahidi, and J. D. Yeo, “Insoluble-Bound Phenolics in Food,” Molecules, vol. 21, pp. 1216 doi: 10.3390/molecules21091216, 2016.

F. Shahidi, and H. Peng, “Bioaccessibility and bioavailability of phenolic compounds,” J Food Bioact, vol. 4, pp. 11–6, 2018.

B. D. Okai, and M. K. L. Bonsi, “Sheanut cake as a substitute for maize in the diets of growing gilts,” Journal of the University of Science and Technology, vol. 9, pp. 45-50, 1989.

J. B. Hall, D. P. Aebischer, H. F. Tomlinson, E. Osei-Amaning, J. R. Hindle, “Vitellaria paradoxa: a monograph. School of Agricultural and Forest,” Wales: Bangor University of Sciences Publication, 105 pp. 1996.

R. R. B. Leakey, “Potential for novel food products from agroforestry trees: a review,” Food Chem, vol. 66, pp. 1-14. 1999.

A. E. S. Djoman, “Etude comparée du profil phytochimique et de quelques proprietes cosmetiques de produits du karite (coque, amande, beurre) et de cinq huiles d’interet commercial (nigelle, onagre, fenugrec, avocat, amande douce),” Mémoire de master en Biotechnologie Agroalimentaire, UFR Biosciences, Université Félix Houphouët-Boigny Abidjan, Côte d’Ivoire, 49 p. 2018.

H. Peng, Z. Deng, X. Chen, Y. Sun, B. Zhang, and H. Li, “Major chemical constituents and antioxidant activities of different extractsn from the peduncles of Hovenia acerba Lindl,” Int J Food Prop, vol. 21 n 1, pp. 2135–2155, 2018.

F. Guede-Guina, A. M. Kra, M. Vangah-Manda, G. Bonga, and C. De Souza, “Inhibition par MISCA6F2 de la croissance de Aspergillus fumigatus; Candida albicans et Cryptococcus neoformans, 3 germes fongiques opportunistes au cours du SID,” Afr J Biomed Res, vol. 2, pp. 11-16, 1997.

V. L. Singleton, E. Orthofer, and R. M. Lamuela-Raventos, “Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin-Ciocalteu reagent, ” Methods Enzymol, vol. 299, pp. 152-178, 1999.

A. Meda, C. E. Lamien, L. Romito, J. Millogro, O. G. “Nacoulma Detemination of total phenolic, flavonoid and proline contents in Burkina Fasso honeys as well as theis scavebging activity,” Food Chem, vol. 91, pp. 571-577, 2005.

N. Benhammou, B. Atik, and T. K. Panovska, “Antiradical capacity of the phenolic compounds of Pistacia lentiscus L. and Pistacia atlantica Desf,” Adv Food Sci , vol. 29 n°3, pp. 155-161, 2007.

M. Oyaizu, “Antioxidative activities of browning reaction prepared from glucosamine,” Jpn J Nutr Diet, vol. 44, pp. 307-315, 1986.

R. Re, N. Pellegrini, A. Proteggente, A. Pannala, M. Yang, C. Rice-Evans, “Antioxidant activity applying an improved ABTS radical cation decolorization assay,” Free Radic Biol Med, vol. 26, pp. 1231–1237, 1999.

R. Jolkumen-Tiito, “Phenolics constituents in the leaves of northen willows: methods for the analysis of certain phenolics,” J Agric Food Chem, vol. 33, pp. 213-217, 1985.

M. K. Khan, Z.-E. Huma, and O. Dangles, “A comprehensive review on flavanones, the major citrus polyphenols,” J Food Compos Anal, vol 33, pp. 85-104, 2014.

P. K. Agrawal, editor. Carbon-13 NMR of flavonoids. New York: Elsevier, 580 p. 1989.

G. F. Deng, X. Lin, X. X. R. Xu, L. L. Gao, J. F. Xie, and H. B. Li, “Antioxidant capacities and total phenolic contents of 56 vegetables,” J Funct Foods, vol. 5 n 1, pp. 260-266, 2013.

R. Goyenech, S. Roura, A. Ponce, A. Vega-Galvez, L. Quispe-Fuentes, E. Uribe, and K. Di Scala, “Chemical characterization and antioxidant capacity of red radish (Raphanus sativus) leaves and roots,” J Funct Foods, vol. 16, pp. 256-264, 2015.

S. D. Amiour, O. Alloui-Lombarkia, F. Bouhdjila, A. Ayachi, and L. Hambaba, “Etude de l’importance des composés phénoliques des extraits de 3 variétés de datte dans son activité antibactérienne,” Phytotherapie, vol. 10, pp. 135-142, 2014.

G. Miliauskas, P. R. Venskutonis, T. A. Van Beek, “Screening of radical scavenging activity of some medical and aromatic plant extract,” Food Chem, vol. 85 n 2, pp. 231-237, 2004.

P. Maisuthisakul, M. Suttajit, and R. Pongsawatmanit,“ Assessment of phenoliccontent and free radical-scavenging capacity of someThai indigenous plants,” Food Chem, vol. 100(4), pp. 1409-1418, 2007.

F. Marc, A. Davin, L. Deglene-Benbrahim, C. Ferrand, M. Baccaunaud, and P. Fritsch, “Méthodes d’évaluation du potentiel antioxydant dans les aliments,” Med/Sci, vol. 20(4), pp. 458-463, 2004.

R. Banerjee, A. K. Verma, A. K. Das, V. Rajkumar, A. A. Shewalkar, H. P. Narkhede, “Antioxidant effects of broccoli powder extract in goat meat nuggets,” Meat Sci, vol. 91(2), pp. 179–184, 2012.

I. Hinneburg, H. J. D. Dorman, R. Hiltunen, “Antioxidant activities of extracts from selected culinary herbs and spices.” Food Chem, vol. 97, pp. 122-129, 2006.

T.T. Mai, N. Fumie, and N.V. Chuyen, “Aantioxidant activities and hypolipidemic effects of an aquous extract from flower buds of Cleistocalyx operculatus (Roxb) merr and perr,” J. Food Biochem, vol. 33, pp. 790-807, 2009.

J. Yeo, F. Shahidi, “Critical evaluation of changes in the ratio of insoluble bound to soluble phenolics on antioxidant activity of lentils during germination,” J Agric Food Chem, vol. 63(2), pp. 379-81, 2015.

A. Podsedeck, “Natural antioxidants and antioxidant capacity of Brassica vegetables A review,” LWT-Food Sci Technol, vol. 40, pp. 1-11, 2007.

T.L. Rains, S. Agarwal, and K.C. Mak, “Antiobesity effects of green tea catechins: a mechanistic review,” J Nutr Biochem, vol. 22, pp. 1-7, 2011.

K. Maeda, and M. Fukuda, “Arbutin: mechanism of its depigmenting action in human melanocyte culture,” J Pharmacol Exp Ther, vol. 276, pp. 765–9, 1996.

H. Fujiwara, Y. Tanaka, Y. Fukui, T. Ashikari, M.Yamaguchi, and T. Kusumi, “Purification and characterization of anthocyanin 3-aromatic acyltransferase from Perilla frutescens,” Plant Sc, vol. 137, pp. 87-94, 1998.

T. Patrice, “Depigmenting agent in compositions for treating skin cancer,” French Patent 2759289, August 14, 17 p. 1998.

S. Kanai, and H. Okano, “Mechanism of the protective effects of sumac gall extract and gallic acid on CCl4-induced acute liver injury in rats,” Am J Chin Med, vol. 26, pp. 333– 341, 1998.

##plugins.themes.bootstrap3.article.details##

How to Cite
Kouakou, A. B., Doué, G. G., Mégnanou, R.-M., & Djoman, A. E. S. (2021). Shea Shells and Press-Cake as New Sources of Bioactive Phenolic Compounds: GC MS Profile and in vitro Antioxidant Activity. European Journal of Biology and Biotechnology, 2(5), 53-59. https://doi.org/10.24018/ejbio.2021.2.5.252