Preliminary Study on the Solanum nigrum L. (Solanaceae) Complex in the Democratic Republic of the Congo
Article Main Content
Black nightshade, or the Solanum nigrum complex, includes a number of species that botanists consider problematic due to their morphological resemblance and the high rate of hybridization. As part of the revision of the family Solanaceae for the Flora central Africa,we realized a molecular study of the Solanum nigrum complex in the western part of the Democratic Republic of Congo. A total of 21 samples of this complex were collected and identified using the recent revision by [11]. The DNA of each specimen was extracted and then amplified by PCR for 4 molecular markers: the two nuclear regions waxy and ITS, and the two chloroplastics markers trnL-F and trnH-psbA. Additional sequences of specimens reliably identified were obtained from GenBank. The combined molecular data set allowed for the identification of two distinct groups. The first we conclude that in the western part of D.R. Congo, two species of the Solanum nigrum complex occur, both showing high morphological variability, while the true Solanum nigrum is absent from that region. The two species are Solanum americanum Mill. and Solanum scabrum Mill. The results confirm the taxonomic decisions of [11]. The generally low resolution in the analyses did not allow to visualize a geographical signal in the variation.
References
-
G.E Barboza., A.T Hunziker., G Bernadello., et al, Solanaceae In: Kadereit J.W. and Bittrich V. (éds) The Families and Genera of Vascular Plants.Springer, Hamburg. XIV: 295–357 2016.
Google Scholar
1
-
C. Linnaeus. Species plantarum. L. Salvius, Stockholm, 1753.
Google Scholar
2
-
M.F, Dunal Histoire naturelle, médicale et économique des Solanum et des genres qui ont été confondus avec eux. A. Koenig, Paris, 1813.
Google Scholar
3
-
M.F, Dunal Solanorum generum que affinium synopsis. Renaud, Montpellier, 1816.
Google Scholar
4
-
G. Bitter, Solana nova vel minus cognita, XVIII. Repertorium Specierum Novarum Regni Vegetabilis 16: 79–103, 1919.
Google Scholar
5
-
S. Knapp A revision of the Dulcamaroid Clade of Solanum L. (Solanaceae). PhytoKeys 22 : 1–432.2013.
Google Scholar
6
-
B. Bikandu, F.Lukoki, J.P.Habari, S.Ntore and M.S.M. Sosef, Solanaceae. In: Sosef M.S.M. (ed.) Flore d’Afrique centrale (Rép. dém. Congo – Rwanda - Burundi), nouvelle série, Spermatophyta. Jardin botanique de Meise, Meise, 2020.
Google Scholar
7
-
T.L Weese. and L. Bohs, A three-gene phylogeny of the genus Solanum (Solanaceae). Plant Systematics and Evolution 32: 445–463, 2007.https://doi.org/10.1600/036364407781179671.
Google Scholar
8
-
L. Bohs Major clades in Solanum based on ndhF sequence data. In : Keating R.C., Hallowell V.C. and Croat T. (éds) A festschrift for William G. D’Arcy: the legacy of a taxonomist. Monographs in Systematic Botany from the Missouri Botanical Garden 104, 2005.
Google Scholar
9
-
T Särkinen., G.E. Barboza and S. Knapp, True black nightshades: phylogeny anddelimitation of the Morelloid clade of Solanum. Taxon 64(5): 945–958, 2015. https://doi.org/10.12705/645.5.
Google Scholar
10
-
T. Särkinen., P Poczai., G.E Barboza., G.M. Weerden., M. Baden and S. Knapp, A revision of the Old World black nightshades (Morelloid clade of Solanum L., Solanaceae). PhytoKeys 106: 1–223, 2018. https://doi.org/10.3897/phytokeys.106.21991.
Google Scholar
11
-
G. M. Lexa., S. Abel.,H. Budahn., E. Klocke., Characterization of the Solanum Nigrum Complex of Kenya by AFLP Markers. International Journal of Agricultural Science and Technology 3:1, 2017. Inc. doi:10.12783/ijast.2015.0301.02.
Google Scholar
12
-
E.A., Olet A.K. Lye and M. Heun, Amplified fragment length polymorphisms (AFLPs) analysis of species of Solanum section Solanum (Solanaceae) from Uganda. African Journal of Biotechnology 10(34) : 6387–6395, 2011,. https://doi.org/10.5897/AJB10.2494.
Google Scholar
13
-
J.M. Edmonds and J.A. Chweya , Black nightshades. Solanum nigrum L. and related species. Promoting the conservation and use of underutilized and neglected crops 15. Institute of Plant Genetics and Crop Plant Research and Rome, International Plant Genetic Resources Institute, Gatersleben, 1997.
Google Scholar
14
-
R.G., Manoko van den Berg R.M.C., Feron van der Weerden G.M. C. and Mariani AFLP markers support separation of Solanum nodiflorum from Solanum americanum sensu stricto (Solanaceae). Plant Systematics and Evolution 267: 1–11, 2007. https://doi.org/10.1007/s00606-007-0531-4.
Google Scholar
15
-
P. Poczai and J. Hyvönen, Identification and characterization of plastid trnF(GAA) pseudogenes in four species of Solanum (Solanaceae). Biotechnology Letters 33: 2317–2323, 2011,. https://doi.org/10.1007/s10529-011-0701-x.
Google Scholar
16
-
J.J. Doyle and J.L. Doyle, A rapid isolation procedure for small quantities of fresh leaf tissue. Phytochemical Bulletin 19: 11–155,. 1987.
Google Scholar
17
-
D.M Spooner., H Ballard., S.A Stephenson. and Polgar Z, Phylogeny of wild potatoes (Solanum sect. Petota) using the nuclear ITS ribosomal DNA region. University of Wisconsin, Madison,. 2005.
Google Scholar
18
-
M.B. Hamilton, Four primer pairs for the amplification of chloroplast intergenic regions with intraspecific variation. Molecular Ecology 8 : 521–523, 1999. PMID: 10199016.
Google Scholar
19
-
P.Taberlet, P.G. Gielly and J Bouvet.. Universal primers for amplication of tree non-coding regions of chloroplast DNA. Plant Molecular Biology 17: 1105–1109, 1991. https://doi.org/10.1007/bf00037152.
Google Scholar
20
-
White T.J, Bruns T., Lee S. and Taylor J. 1990, Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics for phylogenetics. In: Innis M., Gelfand D., Sninsky J. and White T.A (eds) PCR protocole: a guide to methode and application: 315–322. Academic Press, San Diego.
Google Scholar
21
-
K Katoh, K. Misawa, K. Kuma and T. Miyata MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Reseach 30(14): 3059,. 2002. https://doi.org/10.1093/nar/gkf436.
Google Scholar
22
-
Posada D.. jModeltest: phylogenetic model averaging, Molecular Biology and Evolution 25(7): 1253–1256, 2008, https://doi.org/10.1093/molbev/msn083.
Google Scholar
23
-
J.P. Huelsenbeck and F. Ronquist,MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics 17 : 754–755, 2001,https://doi.org/10.1093/bioinformatics/17.8.754.
Google Scholar
24
-
A.J Drummond. and A Rambaut, BEAST: bayesian evolutionary analysis by sampling tree. BMC Evolutionary Biology 7(1): 214. 2007. https://doi.org/10.1186/1471-2148-7-214.
Google Scholar
25
-
Y Suzuki, G.V. Glasko and M. Nei, Overcredibility of molecular phylogenies obtained by Bayesian phylogenetics. Proceeding of the National Academy of Sciences of the United States of America 99: 16138–16143, 2002, https://doi.org/10.1073/pnas.212646199.
Google Scholar
26
-
M.E Alfaro., S. Zoller and F Lutzoni.Bayes or bootstrap? A simulation study comparing performance of bayesian markov chain monte carlo sampling and bootstrapping in assessing phylogenetic confidence. Molecular Biology and Evolution 20(2): 255–266, 2003. https://doi.org/10.1093/molbev/msg028.
Google Scholar
27
-
P. Latham and Konda ku Mbuta, Plantes utiles du Bas-Congo, République démocratique du Congo, 2005, 2me édition. Mystole Publications, Canterbury.
Google Scholar
28
-
F.K., Monthe J.Duminil, E Kasongo Yakusu., et al., The African timber tree Entandrophragma congoense (Pierre ex De Wild.) A.Chev. is morphologically and genetically distinct from Entandrophragma angolense (Welw.) C.DC. Tree Genetics and Genomes 14: 66, 2018 https://doi.org/10.1007/s11295-018-1277-6.
Google Scholar
29
-
M. Renier Flore du Kwango, Tome III. Mission des Jésuites, Kisantu, 1948.
Google Scholar
30
-
K.M Konda., M., Kabakura B.Mbembe, et al. Plantes médicinales de traditions. Province de l’Equateur – R.D.Congo. Institut de Recherche en Sciences de la Santé, Kinshasa, 2012.
Google Scholar
31
-
B.F Nzuki.Recherches ethnobotaniques sur les plantes médicinales dans la Région de Mbanza-Ngungu, RDC. Thèse de Doctorat (PhD), Faculté des Sciences en Bio-Ingénierie, Université de Gand, 2016.
Google Scholar
32
-
W.Zhang, X. Fan, S Zhu., H. Zhao and L. Fu, Species-specific identification from incomplete sampling: applying DNA barcodes to monitoring invasive Solanum plants. PLOS ONE 8(2): e55927,. 2013 https://doi.org/10.1371/journal.pone.0055927.
Google Scholar
33
-
Viljoen E. and Berger D.K. Morphological and molecular evidence for hybridization and polyploidization in the Solanum nigrum L. complex. Lab. 6-25, 2011, Plant Science, Université de Pretoria.
Google Scholar
34
-
M.L Kuzmina, T.W.A Braukmann, A.J., Fazekas et al,Using herbarium-derived DNA to assemble a large-scale DNA barcode library for the vascular plants of Canada. Applications in Plant Sciences 5(12): apps.1700079,. 2017, https://doi.org/10.372/apps.1700079.
Google Scholar
35
-
Y. Wu, B. Wang and L.Xu., Solanaceae DNA molecular identification. University of Traditional Chinese Medicine, 2015.
Google Scholar
36
-
L. Bohs and R.G. Olmstead, A reassessment of Normania triguera (Solanaceae). Plant Systematics and Evolution 228: 33–48, 2001, https://doi.org/10.1007/s006060170035.
Google Scholar
37
-
J. Shaw., E.B. Lickey., J.T.,Beck., S.B. Farmer W., Liu., J. Miller, K.C .Siripun., C.T., Winder., D.E.Soltis., R.K., Kuzoff., M.E., Mort., M.Zanis, M. Fishbein, L. Hufford., M. K. Koontz & Arroyo (2016) Elucidating Deep-Level Phylogenetic Relationships in Saxifragaceae Using Sequences for Six Chloroplastic and Nuclear DNA Regions. Annal.Missouri Botanic. Garden 88(4):669-693.
Google Scholar
38
-
D.J Oh, K Lee, J.Kim, G.P Son. and Y.-H Jung. Genetic analysis of three Solanum accessions based on nrDNA ITS and trnL-trnF sequences, 2011. Non publié.
Google Scholar
39
-
C.M Lopes., F De Barba M., Boyer., et al., DNA metabarcoding diet analysis for species with parapatric vs sympatric distribution: a case study on subterranean rodents. Heredity (Edinburgh) 144(5): 525–36, 2014.. https://doi.org/10.1038/hdy.2014.109.
Google Scholar
40
-
P.W Bosland. and J.B Baral,Phylogenetic analysis of Capsicum using a noncoding region (chloroplast trnL-trnF) of chloroplast. Unpublished thesis. 27–49, 2003. Missouri Botanical Garden, St. Louis.
Google Scholar
41
-
S.R. Stern., M.F Agra. and L.Bohs. Molecular delimitation of clades within New World species of the “spiny solanums” (Solanum subgenus Leptostemonum). Taxon 60: 1429–1441, 2011.
Google Scholar
42
-
B.Raoudha., S. Amelb, G. Hassenc and O.B. Azeiz. Extraction de l’ADN et optimisation de la PCR (Polymorphism Chain Reaction) pour l’application des marqueurs RAPD (Random Amplified Polymorphism DNA) chez Stipa lagascae ,Acta Botanica Gallica, 159:1, 73-78, 2012. DOI: 10.1080/12538078.2012.671646.
Google Scholar
43