Universitas Hang Tuah, Indonesia
* Corresponding author
Universitas Hang Tuah, Indonesia

Article Main Content

S.hermanni is a marine biota that contains active components that are anti-fungal, anti-bacterial, antioxidant, anti-inflammatory, and anti-cancer. The research focused on examining the antiplasmodial activity of an ethanol extract of S. hermanni on the proliferation of P. falciparum in vitro. The total sample size was 30 mediums, which included: (G1). No extract or chloroquine administration in the P.falciparum medium (G2). Chloroquine treatment administration on P. falciparum medium (G3). P. falciparum medium with S. hermanni extract. Parasitaemia, growth percentage, inhibitory rate, and IC50 were among the parameters evaluated. Administration of extract serial doses succeeds in reducing the percentage of parasite growth and parasitemia levels. G3 demonstrated an inhibitory rate of 88.51 % with a dose of 100 µg/ml and an IC50 of 2.86 µg/ml, indicating high antimalarial activity, although chloroquine had greater antimalarial activity than S. hermanni extract. In vitro studies on S hermanni, ethanol extract indicated that it contains bioactive components and can be an effective antiplasmodial agent.

References

  1. A. Mousa et al., “The impact of delayed treatment of uncomplicated P. falciparum malaria on progression to severe malaria : A systematic review and a pooled multicentre individual- patient meta-analysis,” Plos Med., vol. 17, no. 10, pp. 1–28, 2020, doi: 10.1371/journal.pmed.1003359.
     Google Scholar
  2. World Health Organization, World Malaria Report 2019. Geneva. 2019, pp xii-xiii.
     Google Scholar
  3. A. R. Hidayati et al., “Antimalarial activity of flavonoid compound isolated from leaves of artocarpus altilis,” Pharmacogn. J., vol. 12, no. 4, pp. 835–842, 2020, doi: 10.5530/pj.2020.12.120.
     Google Scholar
  4. Y. Khotimchenko, “Pharmacological Potential of Sea Cucumbers,” Int. J. Mol. Scinces, vol. 19, no. 1342, pp. 1–42, 2018, doi: 10.3390/ijms19051342.
     Google Scholar
  5. A. Rasyid, Y. Yasman, and M. Y. Putra, “Current prospects of nutraceutical and pharmaceutical use of sea cucumbers,” Pharmacia, vol. 68, no. 3, pp. 561–572, 2021, doi: 10.3897/pharmacia.68.e69140.
     Google Scholar
  6. N.Sarhadizadeh, M.Afkhami, and M.Ehsanpour, “Evaluation bioactivity of a Sea cucumber , Stichopus hermanni from Persian Evaluation bioactivity of a Sea cucumber , Stichopus hermanni from Persian Gulf,” Eur. J. Exp. Biol., vol. 4, no. 1, pp. 254–258, 2014.
     Google Scholar
  7. K. Parasihni and S. Revianti, “Antifungal effect of Sticophus hermanii and Holothuria atra extract and its cytotoxicity on gingiva-derived mesenchymal stem cell,” Dent. J., vol. 46, no. 4, pp. 218–223, 2013.
     Google Scholar
  8. E. Setyaningrum, A. Arifiyanto, N. Nukmal, T. N. Aeny, M. handerlin Putri, and U. N. mah Setiawati, “In vitro test for inhibition of Plasmodium falciparum 3d7 parasites using streptomyces hygroscopicus subsp. hygroscopicus strain i18, isolated from a Pineapple Farm in lampung,” J. Pure Appl. Microbiol., vol. 15, no. 2, pp. 891–896, 2021, doi: 10.22207/JPAM.15.2.45.
     Google Scholar
  9. J. R. Shaikh and M. Patil, “Qualitative tests for preliminary phytochemical screening: An overview,” Int. J. Chem. Stud., vol. 8, no. 2, pp. 603–608, 2020, doi: 10.22271/chemi.2020.v8.i2i.8834.
     Google Scholar
  10. R.Kurnijasanti and M.Candrarisna, “The effect of pisang ambon (Musa paradisiaca L.) stem extract on the regulation of IL-1ß, IL-6 and TNF-α in rats’ enteritis,” Iraqi J. Vet. Sci., vol. 33, no. 2, pp. 407–413, 2019, doi: 10.1093/carcin/bgs062.
     Google Scholar
  11. E. Damayanti, J. Widada, P. D. N. Lotulung, A. Dinoto, and Mustofa, “Bioassay guided fractionation of marine streptomyces sp. GMY01 and antiplasmodial assay using microscopic and flow cytometry method,” Indones. J. Pharm., vol. 31, no. 4, pp. 281–289, 2020, doi: 10.22146/ijp.809.
     Google Scholar
  12. S. D. Desai, D. G. Desai, and H. Kaur, “Saponins and their biological activities,” Pharma Times, vol. 41, no. 3, pp. 13–16, 2009.
     Google Scholar
  13. P. A. Kweyamba, D. Zofou, N. Efange, J. C. N. Assob, J. Kitau, and M. Nyindo, “In vitro and in vivo studies on anti-malarial activity of Commiphora africana and Dichrostachys cinerea used by the Maasai in Arusha region, Tanzania,” Malar. J., vol. 18, no. 1, pp. 1–6, 2019, doi: 10.1186/s12936-019-2752-8.
     Google Scholar
  14. M. Zakiah, R. A. Syarif, M. Mustofa, J. Jumina, N. Fatmasari, and E. N. Sholikhah, “In Vitro Antiplasmodial, Heme Polymerization, and Cytotoxicity of Hydroxyxanthone Derivatives Mistika,” J. Trop. Med., vol. 2021, no. 8866681, pp. 1–11, 2021.
     Google Scholar
  15. I. Indriani, N. S. Aminah, and N. N. T. Puspaningsih, “Antiplasmodial Activity of Stigmastane Steroids from Dryobalanops oblongifolia Stem Bark,” Open Chem., vol. 18, no. 1, pp. 259–264, 2020, doi: 10.1515/chem-2020-0027.
     Google Scholar
  16. J. Gomis-Tena et al., “When Does the IC50Accurately Assess the Blocking Potency of a Drug?,” J. Chem. Inf. Model., vol. 60, no. 3, pp. 1779–1790, 2020, doi: 10.1021/acs.jcim.9b01085.
     Google Scholar
  17. J. Pum, A practical guide to validation and verification of analytical methods in the clinical laboratory, 1st ed., vol. 90. Elsevier Inc., 2019.
     Google Scholar
  18. D. Pringgenies, S. Rudiyanti, and E. Yudiati, “Exploration of Sea Cucumbers Stichopus hermanii from Karimunjawa Islands as Production of Marine Biological Resources,” IOP Conf. Ser. Earth Environ. Sci., vol. 116, no. 1, 2018, doi: 10.1088/1755-1315/116/1/012039.
     Google Scholar
  19. D. H. Truong, D. H. Nguyen, N. T. A. Ta, A. V. Bui, T. H. Do, and H. C. Nguyen, “Evaluation of the use of different solvents for phytochemical constituents, antioxidants, and in vitro anti-inflammatory activities of severinia buxifolia,” J. Food Qual., vol. 2019, no. 8178294, pp. 1–10, 2019, doi: 10.1155/2019/8178294.
     Google Scholar
  20. M. L. Chávez-González et al., “Conventional and emerging extraction processes of flavonoids,” Processes, vol. 8, no. 434, pp. 1–29, 2020, doi: 10.3390/PR8040434.
     Google Scholar
  21. A. Wakeel, S. A. Jan, I. Ullah, Z. K. Shinwari, and M. Xu, “Solvent polarity mediates phytochemical yield and antioxidant capacity of Isatis tinctoria,” PeerJ, vol. 2019, no. 10, pp. 1–19, 2019, doi: 10.7717/peerj.7857.
     Google Scholar
  22. N. El Houda Lezoul, M. Belkadi, F. Habibi, and F. Guillén, “Extraction processes with several solvents on total bioactive compounds in different organs of three medicinal plants,” Molecules, vol. 25, no. 4672, pp. 1–15, 2020, doi: 10.3390/molecules25204672.
     Google Scholar
  23. M. A. Ungogo, G. U. Ebiloma, N. Ichoron, J. O. Igoli, H. P. de Koning, and E. O. Balogun, “A Review of the Antimalarial, Antitrypanosomal, and Antileishmanial Activities of Natural Compounds Isolated From Nigerian Flora,” Front. Chem., vol. 8, no. 617448, pp. 1–28, 2020, doi: 10.3389/fchem.2020.617448.
     Google Scholar
  24. M. M. A. El Aziz, A. S. Ashour, and A. S. G. Melad, “A review on saponins from medicinal plants: chemistry, isolation, and determination,” J. Nanomedicine Res., vol. 7, no. 4, pp. 282–288, 2019, doi: 10.15406/jnmr.2019.07.00199.
     Google Scholar
  25. J. Talapko, I. Škrlec, T. Alebi, M. Juki, and A. Vˇcev, “Malaria : The Past and the Present,” Microorganisms, vol. 7, no. 179, pp. 1–17, 2019.
     Google Scholar
  26. P. F. Uzor, “Alkaloids from Plants with Antimalarial Activity : A Review of Recent Studies,” Hindawi 2 Evidence-Based Complement. Altern. Med., vol. 2020, pp. 1–17, 2020.
     Google Scholar
  27. M. Fadaeinasab, H. Taha, P. N. M. Fauzi, H. M. Ali, and A. Widyawaruyanti, “Anti-malarial Activity of Isoquinoline Alkaloids from the Stem Bark of Actinodaphne macrophylla,” Nat. Prod. Commun., vol. 10, no. 9, 2015, doi: 10.1177/1934578X1501000913.
     Google Scholar
  28. R. Krieg et al., “Arylmethylamino steroids as antiparasitic agents,” Nat. Commun., vol. 8, no. 14478, pp. 1–14, 2017, doi: 10.1038/ncomms14478.
     Google Scholar