Assess the Extinction Risk of Mountain Endemic Plants in Egypt Under the Current Climatic Condition: A Case Study of Endemic Silene Species

##plugins.themes.bootstrap3.article.main##

  •   Karim Omar

  •   Ibrahim Elgamal

Abstract

The process of developing a conservation programme for endemic plant species, in particular those with a small geographical size in mountain ecosystems, whether in situ of ex situ, is a very complex matter, especially if data on the state of the environment and conservation are unavailable. Silene leucophylla and Silene oreosinaica are perennial plants endemic to St. Catherine Protected Area (SCPA), which locate at South Sinai, Egypt. For long time, the second species has not been observed in the field. As a result, the purpose of this study was to increase understanding of the two species' ecological and conservation statuses by: The first step is to confirm their existence on the ground; the second step is to determine the present ecological and conservation conditions through an extinction risk assessment by using IUCN Red List methodology; and the third step is the use of Species Distribution Model (SDM) to locate and extract current appropriate habitat suitability. The field research, which was conducted between March to December 2017, resulted in building knowledge of the current distribution, characteristics of current species populations, and status of ecology and habitat, in addition to identifying the main threats. Both species have been recorded in 20 major sites, in a very restricted area, particularly in a high mountain region (19 sites of Silene leucophylla and 3 sites of S. oreosinaica), with Extent of Occurrence about 468.2 km2 for Silene leucophylla and 24.5 km2 for S. oreosinaica. The population size was very small and fragmented and the extreme drought and overgrazing clearly affected both species. Based on the collected data, the extinction risk was calculated as Critically Endangered for S. oreosinaica and as Endangered for S. leucophylla according to IUCN Red List. For both species, appropriate habitat is concentrated in the high mountain ranges in the central north section of the SCPA, according to SDM. For Silene leucophylla, a presence probability of 20.5 km2 was anticipated, whereas for S. oreosinaica, a presence probability of 62.1 km2 had been predicted. Conservation methods are advocated both in situ (via recovery) and ex situ (by seed collecting and storage, awareness building, and grazing control).


Keywords: conservation management; endemic plants; IUCN Red List; mountain habitat; poorly known species; Silene leucophylla; Silene oreosinaica; Species Distribution Models

References

Pimm, S. L., Russell, G. J., Gittleman, J. L., & Brooks, T. M. (1995). The future of biodiversity. Science, 269(5222), 347–350.

Le Roux, J. J., Hui, C., Castillo, M. L., Iriondo, J. M., Keet, J.-H., Khapugin, A. A., Médail, F., Rejmánek, M., Theron, G., & Yannelli, F. A. (2019). Recent anthropogenic plant extinctions differ in biodiversity hotspots and coldspots. Current Biology, 29(17), 2912–2918.

Meyer, C., Weigelt, P., & Kreft, H. (2016). Multidimensional biases, gaps and uncertainties in global plant occurrence information. Ecology Letters, 19(8), 992–1006. https://doi.org/10.1111/ele.12624.

Sporbert, M., Bruelheide, H., Seidler, G., Keil, P., Jandt, U., Austrheim, G., Biurrun, I., Campos, J. A., Čarni, A., Chytrý, M., Csiky, J., De Bie, E., Dengler, J., Golub, V., Grytnes, J.-A., Indreica, A., Jansen, F., Jiroušek, M., Lenoir, J., Welk, E. (2019). Assessing sampling coverage of species distribution in biodiversity databases. Journal of Vegetation Science, 30(4), 620–632. https://doi.org/10.1111/jvs.12763.

Ceballos, G., Ehrlich, P. R., Barnosky, A. D., García, A., Pringle, R. M., & Palmer, T. M. (2015). Accelerated modern human–induced species losses: Entering the sixth mass extinction. Science Advances, 1(5), e1400253.

He, F. (2009). Price of prosperity: economic development and biological conservation in China. Journal of Applied Ecology, 511–515.

Silveira, F. A. O., Teixido, A. L., Zanetti, M., Pádua, J. G., De Andrade, A. C. S., & Da Costa, M. L. N. (2018). Ex situ conservation of threatened plants in Brazil: A strategic plan to achieve target 8 of the global strategy for plant conservation. Rodriguesia, 69(4), 1547–1555. https://doi.org/10.1590/2175-7860201869405.

Omar, K., & Elgamal, I. (2021a). Can we save critically endangered relict endemic plant species? A case study of Primula boveana Decne ex Duby in Egypt. Journal for Nature Conservation, 61, 126005.

Omar, K., & Elgamal, I. (2021b). IUCN Red List and Species Distribution Models as tools for the conservation of poorly known species: a case study of endemic plants Micromeria serbaliana and Veronica kaiseri in South Sinai, Egypt. Kew Bulletin, 1–20.

Miller, R. M., Rodríguez, J. P., Aniskowicz-Fowler, T., Bambaradeniya, C., Boles, R., Eaton, M. A., Gärdenfors, U., Keller, V., Molur, S., & Walker, S. (2006). Extinction risk and conservation priorities. Science, 313(5786), 441.

Miller, R. M., Rodríguez, J. P., ANISKOWICZ‐FOWLER, T., Bambaradeniya, C., Boles, R., Eaton, M. A., Gärdenfors, U. L. F., Keller, V., Molur, S., & Walker, S. (2007). National threatened species listing based on IUCN criteria and regional guidelines: current status and future perspectives. Conservation Biology, 21(3), 684–696.

Miller, R. M. (2013). Threatened species: Classification systems and their applications. In Encyclopedia of Biodiversity (pp. 191–210). Elsevier. https://doi.org/doi:10.1016/b978-0-12-384719-5.00415-9,.

Anderson, S. (1994). Area and endemism. The Quarterly Review of Biology, 69(4), 451–471.

Payne, J. L., & Finnegan, S. (2007). The effect of geographic range on extinction risk during background and mass extinction. Proceedings of the National Academy of Sciences, 104(25), 10506–10511.

Fontaine, B., Bouchet, P., Van Achterberg, K., Alonso-Zarazaga, M. A., Araujo, R., Asche, M., Aspöck, U., Audisio, P., Aukema, B., & Bailly, N. (2007). The European union’s 2010 target: putting rare species in focus. Biological Conservation, 139(1–2), 167–185.

IUCN Standards and Petitions Committee. (2019). Guidelines for Using the IUCN Red List Categories and Criteria, Version 14. 1(August), 1–60.

Lamoreux, J., Resit Akçakaya, H., Bennun, L., Collar, N. J., Boitani, L., Brackett, D., Bräutigam, A., Brooks, T. M., da Fonseca, G. A. B., Mittermeier, R. A., Rylands, A. B., Gärdenfors, U., Hilton-Taylor, C., Mace, G., Stein, B. A., & Stuart, S. (2003). Value of the IUCN Red List. Trends in Ecology & Evolution, 18(5), 214–215. https://doi.org/10.1016/S0169-5347(03)00090-9.

de Grammont, P. C., & Cuarón, A. D. (2006). An evaluation of threatened species categorization systems used on the American continent. Conservation Biology, 20(1), 14–27.

Mace, G. M., Collar, N. J., Gaston, K. J., Hilton-Taylor, C., Akçakaya, H. R., Leader-Williams, N., Milner-Gulland, E. J., & Stuart, S. N. (2008). Quantification of extinction risk: IUCN’s system for classifying threatened species. Conservation Biology, 22(6), 1424–1442. https://doi.org/10.1111/j.1523-1739.2008.01044.x.

Vié, J.-C., Hilton-Taylor, C., Pollock, C., Ragle, J., Smart, J., Stuart, S., & Tong, R. (2008). The IUCN Red List: a Key Conservation Tool. In The 2008 Review of The IUCN Red List of Threatened Species. IUCN Gland,. https://www.iucn.org/sites/dev/files/import/downloads/the_iucn_red_list_a_key_conservation_tool_1.pd.

Elith, J., Graham, C. H., Anderson, R. P., Ferrier, S., Guisan, A., Hijmans, R. J., Huettmann, F., Leathwick, J. R., Lehmann, A., & Li, J. (2006). Novel methods improve prediction of species’ distributions from occurrence data. Ecography 29: 129-151. Peterson AT, Phillips SJ, Richardson KS, Scachetti-Pereira R, Schapire RE, Soberón J., Williams S, Wisz MS, Zimmermann NE.

Elith, J., & Leathwick, J. R. (2009). Species Distribution Models: Ecological Explanation and Prediction Across Space and Time. Annual Review of Ecology, Evolution and Systematics, 40, 677–697. https://doi.org/10.1146/annurev.ecolsys.110308.120159.

McSHEA, W. (2014). What are the roles of species distribution models in conservation planning? Environmental Conservation, 41(2), 93–96.

Raxworthy, C. J., Martinez-Meyer, E., Horning, N., Nussbaum, R. A., Schneider, G. E., Ortega-Huerta, M. A., & Peterson, A. T. (2003). Predicting distributions of known and unknown reptile species in Madagascar. Nature, 426(6968), 837–841.

Rushton, S. P., Ormerod, S. J., & Kerby, G. (2004). New paradigms for modelling species distributions? Journal of Applied Ecology, 41(2), 193–200.

Khafagi, O., Hatab, E. E., & Omar, K. (2011). Predicting the potential geographical distribution of Nepeta septemcrenata in Saint Katherine Protectorate, South Sinai, Egypt using Maxent. Academia Arena, 3(7), 45–50.

Khafagi, O., Hatab, E. E., & & Omar, K. (2013). Ecological Niche Modeling As a Tool for Conservation Planning: Suitable Habitat for Hypericum sinaicum in South Sinai, Egypt. Universal Journal of Environmental Research and Technology., 2(6), 515–524.

Irfan-Ullah, M., Amarnath, G., Murthy, M. S. R., & Peterson, A. T. (2007). Mapping the geographic distribution of Aglaia bourdillonii Gamble (Meliaceae), an endemic and threatened plant, using ecological niche modeling BT - Plant Conservation and Biodiversity (D. L. Hawksworth & A. T. Bull (eds.); pp. 343–351). Springer Netherlands. https://doi.org/10.1007/978-1-4020-6444-9_22.

Ray, R., Gururaja, K. V., & Ramchandra, T. V. (2011). Predictive distribution modeling for rare Himalayan medicinal plant Berberis aristata DC. Journal of Environmental Biology, 32(6), 725–730.

Adhikari, D., Barik, S. K., & Upadhaya, K. (2012). Habitat distribution modelling for reintroduction of Ilex khasiana Purk., a critically endangered tree species of northeastern India. Ecological Engineering, 40, 37–43.

Kaky, E., & Gilbert, F. (2019). Assessment of the extinction risks of medicinal plants in Egypt under climate change by integrating species distribution models and IUCN Red List criteria. Journal of Arid Environments, 170, 103988.

Hughes, C., & Eastwood, R. (2006). Island radiation on a continental scale: Exceptional rates of plant diversification after uplift of the Andes. Proceedings of the National Academy of Sciences, 103(27), 10334–10339. https://doi.org/10.1073/pnas.0601928103.

Khafagi, O., Hatab, E. E., & Omar, K. (2012). Challenges towards Hypericum sinaicum conservation in south Sinai, Egypt. Jordan Journal of Biological Sciences, 6(2), 116–126.

Gaston, K. J. (1998). Rarity as double jeopardy. Nature, 394(6690), 229–230.

Whittaker, R. J., & Fernández-Palacios, J. M. (2007). Island biogeography: ecology, evolution, and conservation. Oxford University Press.

Zahran, M. A., Wafaa, A. M., Samy, A. A., & Omran, G. N. (2015). Endemic species in Sinai peninsula, Egypt, with particular reference to Saint Katherine protectorate: I-ecological features. J. Environ. Sci, 44(4), 589–609.

Carlquist, S. J. (1974). Island biology. Columbia University Press.

Strid, A. (1986). The mountain flora of Greece with special reference to the Anatolian element. Proceedings of the Royal Society of Edinburgh, Section B: Biological Sciences, 89, 59–68.

Shehata, A. A., & Kamel, W. M. (2007). A contribution to the palynological studies of the endemic flora of Sinai, Egypt. Roczniki Akademii Rolniczej w Poznaniu. Botanika-Steciana, 11.

Valderrábano, M., Gil, T., Heywood, V., & de Montmollin, B. (eds. . (2018). Conserving wild plants in the south and east Mediterranean region (Issue BOOK_B). Union internationale pour la conservation de la nature.

Omar, K. (2014). Primula boveana. The IUCN Red List of Threatened Species 2014: e.T163968A1015883. https://doi.org/10.2305/IUCN.UK.2014-3.RLTS.T163968A1015883.en.

Omar, K. (2017a). Bufonia multiceps. The IUCN Red List of Threatened Species 2017: e. T84119945A84119949.

Omar, K. (2017a). Euphorbia obovata. The IUCN Red List of Threatened Species 2017: e. T84119968A84119977.

Omar, K. (2017b). Phlomis aurea. The IUCN Red List of Threatened Species 2017: e. T84119983A84119987.

Omar, K. (2017c). Rosa arabica. The IUCN Red List of Threatened Species 2017: e. T84120072A84120074.

Bratteler, M., Baltisberger, M., & Widmer, A. (2006). QTL analysis of intraspecific differences between two Silene vulgaris ecotypes. Annals of Botany, 98(2), 411–419.

Boulos, L. (2009). Flora of Egypt checklist, revised annotated edition. Al-Hadara Publishing, Cairo, 198–201.

Radford, E. A., Catullo, G., & and Montmollin, B. de. (eds). (2011). Important Plant Areas of the south and east Mediterranean region : priority sites for conservation. Gland, Switzerland and Malaga, Spain: IUCN. (viii +). Gland, Switzerland and Malaga, Spain: IUCN. https://portals.iucn.org/library/sites/library/files/documents/2011-014.pdf.

Rabei, S., Nada, R., & El Gamal, I. (2016). Bio-systematic study on the endemic Silene oreosinaica Chowdhuri from Sinai, Egypt. Scientific Journal for Damietta Faculty of Science, 6(2), 183–188.

Boulos, L. (1999). Flora of Egypt, vol. 1. Cairo: Al Hadara Publishing, 417.

El Hadidi, M. N., & Hosni, H. A. (2000). Flora Aegyptiaca: part 1-vol. 1, part 2. Palm Press.

Hosny, A. I., El Hadidi, M. N., & Shamso, E. M. (1992). Taxonomic Studies of Silenoideae (Cartophyllaceae) in Egypt. 1. Systematic revision of the genus Silene L. Taeckholmia, 14, 1–36.

Rabei, S., Nada, R., & EL Gamal, I. (2020). Studies on five Silene L. Taxa in Saint Catherine Protectorate, South Sinai, Egypt. Jordan Journal of Biological Sciences, 13(1), 59–67.

Täckholm, V. (1974). Students’ Flora of Egypt. –Cairo University press, Cairo.

Moustafa, A. A., & Klopatek, J. M. (1995). Vegetation and landforms of the Saint Catherine area, southern Sinai, Egypt. Journal of Arid Environments, 30(4), 385–395. https://doi.org/https://doi.org/10.1006/jare.1995.0033.

Omar, K. (2012). Vegetation, soil and grazing analysis in Saint Katherine Protectorate, South Sinai, Egypt. NeBIO, 3(2), 80–92.

Hatab, E. E. (2009). Ecological studies on the Acacia Species and Ecosystem Restoration in the Saint Katherine Protectorate, South Sinai, Egypt. Al-Azhar University.

Fayed, A. A., El-Garf, I. A., Abdel-Khalik, K. N., & Osman, A. K. (2004). Floristic survey of the mountainous region of South Sinai, St Katherine’s Protectorate, Medicinal Plants Conservation Project. Egypt, Report, 146.

Shaltout, K., Heneidy, S., Al-Sodany, Y., M., M., Eid, E., Hatim, M., & E., E.-G. (2004). Floristic Survey of the Mountainous Region of South Sinai; St. Katherine’s Protectorate, Medicinal Plants Conservation Project. Egypt.

Moustafa, A. A., Zaghloul, M. S., El-Wahab, R. H. A., & Shaker, M. (2001). Evaluation of plant diversity and endemism in Saint Catherine Protectorate, South Sinai, Egypt. Egyptian Journal of Botany, 41(1), 121–139.

Khedr, A. (2007). Assessment, classification, and analysis of microhabitats supporting globally significant plant species. Conservation and Sustainable Use of Medicinal Plants in Arid and Semi-Arid Eco-Systems Project. Saint Katherine Protectorate, Egypt, Final Report: EEAA, GEF & UNDP, Cairo, Egypt, 145.

Cox, G. (1990). Laboratory manual of general ecology 6th Ed. Dubuque, Iowa: WIlliam C. Brown, 143 pp.

IUCN. (2012). IUCN Red List Categories and Criteria: Version 3.1. Second edition. In Gland, Switzerland and Cambridge, UK: IUCN.: Vol. iv. https://portals.iucn.org/library/node/10315.

Jackson, M. L. (1967). Soil chemical analysis. Prentice Hall of India Pvt. Ltd., New Delhi, 498 p.

Braun-Blanquet, J. (1964). Plant sociology. Translated by GD Fuller and HS Conard Mc-Graw-Hill Book Co. Inc. New York, 865.

Assi, R. (2007). MP Threat Analysis and Threat Reduction Assessment Report. In Conservation and sustainable use of medicinal plants in arid and semi-arid ecosystems project.

Kumar, S., Stohlgren, T. J., & Chong, G. W. (2006). Spatial heterogeneity influences native and nonnative plant species richness. Ecology, 87(12), 3186–3199. https://doi.org/10.1890/0012-9658(2006)87[3186:SHINAN]2.0.CO;2.

Guisan, A., Graham, C. H., Elith, J., Huettmann, F., & Group, N. S. D. M. (2007). Sensitivity of predictive species distribution models to change in grain size. Diversity and Distributions, 13(3), 332–340.

Pearson, R. G., Raxworthy, C. J., Nakamura, M., & Townsend Peterson, A. (2007). Predicting species distributions from small numbers of occurrence records: A test case using cryptic geckos in Madagascar. Journal of Biogeography, 34(1), 102–117. https://doi.org/10.1111/j.1365-2699.2006.01594.x.

Hijmans, R. J., Cameron, S. E., Parra, J. L., Jones, P. G. &, & Jarvis, A. (2005). Very high resolution interpolated climate surfaces for global land areas. International Journal of Climatology: A Journal of the Royal Meteorological Society, 25(15), 1965-1978.

Graham, C. H., & Hijmans, R. J. (2006). A comparison of methods for mapping species ranges and species richness. Global Ecology and Biogeography, 15(6), 578–587.

Murienne, J., Guilbert, E., & Grandcolas, P. (2009). Species’ diversity in the New Caledonian endemic genera Cephalidiosus and Nobarnus (Insecta: Heteroptera: Tingidae), an approach using phylogeny and species’ distribution modelling. Biological Journal of the Linnean Society, 97(1), 177–184. https://doi.org/10.1111/j.1095-8312.2008.01184.x.

de Luis, M., Bartolomé, C., García Cardo, Ó., & Álvarez-Jiménez, J. (2018). Gypsophila bermejoi G. López: A possible case of speciation repressed by bioclimatic factors. PloS One, 13(1), e0190536.

Bosso, L., Di Febbraro, M., Cristinzio, G., Zoina, A., & Russo, D. (2016). Shedding light on the effects of climate change on the potential distribution of Xylella fastidiosa in the Mediterranean basin. Biological Invasions, 18(6), 1759–1768.

Smeraldo, S., Di Febbraro, M., Bosso, L., Flaquer, C., Guixé, D., Lisón, F., Meschede, A., Juste, J., Prüger, J., & Puig-Montserrat, X. (2018). Ignoring seasonal changes in the ecological niche of non-migratory species may lead to biases in potential distribution models: lessons from bats. Biodiversity and Conservation, 27(9), 2425–2441.

Kalle, R., Ramesh, T., Qureshi, Q., & Sankar, K. (2013). Predicting the distribution pattern of small carnivores in response to environmental factors in the Western Ghats. PLoS One, 8(11), e79295.

Ortega-Huerta, M. A. ., & Peterson, A. T. (2008). Modeling ecological niches and predicting geographic distributions: A test of six presence-only methods. Revista Mexicana de La Biodiversidad, 1(1), 205–216.

Hernandez, P. A., Graham, C. H., Master, L. L., & Albert, D. L. (2006). The effect of sample size and species characteristics on performance of different species distribution modeling methods. Ecography, 29(5), 773–785.

Papeş, M., & Gaubert, P. (2007). Modelling ecological niches from low numbers of occurrences: Assessment of the conservation status of poorly known viverrids (Mammalia, Carnivora) across two continents. Diversity and Distributions, 13(6), 890–902. https://doi.org/10.1111/j.1472-4642.2007.00392.x.

Hoveka, L., Bezeng, B., Yessoufou, K., Boatwright, J., & Van der Bank, M. (2016). Effects of climate change on the future distributions of the top five freshwater invasive plants in South Africa. South African Journal of Botany, 102, 33–38.

Choudhury, M. R., Deb, P., Singha, H., Chakdar, B., & Medhi, M. (2016). Predicting the probable distribution and threat of invasive Mimosa diplotricha Suavalle and Mikania micrantha Kunth in a protected tropical grassland. Ecological Engineering, 97, 23–31. https://doi.org/10.1016/j.ecoleng.2016.07.018.

Işik, K. (2011). Rare and endemic species: Why are they prone to extinction? Turkish Journal of Botany, 35(4), 411–417. https://doi.org/10.3906/bot-1012-90.

Balslev, H. (1988). Distribution patterns of Ecuadorean plant species. Taxon, 37(3), 567–577.

Sklenář, P., & Jørgensen, P. M. (1999). Distribution patterns of paramo plants in Ecuador. Journal of Biogeography, 26(4), 681–691. https://doi.org/10.1046/j.1365-2699.1999.00324.x.

Kessler, M. (2000). Elevational gradients in species richness and endemism of selected plant groups in the central Bolivian Andes. Plant Ecology, 149(2), 181–193. https://doi.org/10.1023/A:1026500710274.

Colwell, R. K., & Lees, D. C. (2000). The mid-domain effect: geometric constraints on the geography of species richness. Trends in Ecology & Evolution, 15(2), 70–76.

Brown, J. H. (2001). Mammals on mountainsides: elevational patterns of diversity. Global Ecology and Biogeography, 10(1), 101–109.

Zohary, M. (1973). Geobotanical foundations of the Middle East. Stuttgart, G. Fischer.

McNeely, J. A., Harrison, J., & Dingwall, P. (1994). Protecting nature: Regional reviews of protected areas. In IVth world congress on national parks and protected areas, Caracas, Venezuela.

Castellano, M. A., Trappe, J. M., & Luoma, D. L. (2004). SEQUESTRATE FUNGI. In Biodiversity of Fungi (pp. 197–213). https://doi.org/10.1016/B978-012509551-8/50013-1.

Shaltout, K., Ahmed, D. ., & Shabana, H. . (2015). Population structure and dynamics of the endemic species Phlomis aurea Decne in different habitats in southern Sinai Peninsula, Egypt. Global Ecology and Conservation, 4, 505–515.

https://doi.org/https://doi.org/10.1016/j.gecco.2015.10.002.

Schlesinger, W. H., Raikes, J. A., Hartley, A. E., & Cross, A. F. (1996). On the Spatial Pattern of Soil Nutrients in Desert Ecosystems. Ecology, 77(2), 364–374. https://doi.org/10.2307/2265615.

Dunkerley, D. L., & Brown, K. J. (1997). Desert soils. Arid Zone Geomorphology: Process, Form and Change in Drylands’. 2nd Edn.(Ed. DSG Thomas.) pp. 55–68.

Abd El-Wahab, R., & Moustafa, A. (2006). Vegetation and Environment of Gebel Serbal, South Sinai, Egypt. Catrina, 1, 9–20.

El-Demerdash, M. (2007). The Ex Situ Conservation Technical Report on Propagation of Medicinal Plants. MPCP, The Egyptian Environmental Affairs Agency (EEAA).

El-Mawey, M. (2008). Technical Report on Restoration of Endangered Plant Species in St. Catherine Protectorate. MPCP, Egyptian Environmental Affairs Agency (EEAA).

Pennington, R. T., Lavin, M., Särkinen, T., Lewis, G. P., Klitgaard, B. B., & Hughes, C. E. (2010). Contrasting plant diversification histories within the Andean biodiversity hotspot. Proceedings of the National Academy of Sciences of the United States of America, 107(31), 13783–13787. https://doi.org/10.1073/pnas.1001317107.

Särkinen, T. E., Marcelo-Peña, J. L., Daza Yomona, A., Simon, M. F., Toby Pennington, R., & Hughes, C. E. (2011). Underestimated endemic species diversity in the dry inter-Andean valley of the Río Marañón, northern Peru: An example from Mimosa (Leguminosae, Mimosoideae). Taxon, 60(1), 139–150.

https://doi.org/10.1002/tax.601012.

Langhammer, P. F., Bakarr, M. I., Bennun, L. A., Brooks, T. M., Clay, R. P., Darwall, W., De Silva, N., Edgar, G. J., Eken, G., Fishpool, L. D. C., Fonseca, G. A. B. da, Foster, M. N., Knox, D. H., Matiku, P., Radford, E. A., Rodrigues, A. S. L., Salaman, P., & Sechrest, W. A. W. (2007). Identification and gap analysis of key biodiversity areas: targets for comprehensive protected area systems. In Gland, Switzerland: IUCN. Gland, Switzerland: IUCN.

https://doi.org/10.2305/iucn.ch.2006.pag.15.en.

Moustafa, A., & Zayed, A. (1996). Effect of environmental factors on the flora of alluvial fans in southern Sinai. Journal of Arid Environments, 32(4), 431–443.

Pavlik, B. M. (1997). Perspectives, Tools, and Institutions for Conserving Rare Plants. The Southwestern Naturalist, 42(4), 375–383. http://www.jstor.org/stable/30055302.

Rodrigues, A. S. L., Pilgrim, J. D., Lamoreux, J. F., Hoffmann, M., & Brooks, T. M. (2006). The value of the IUCN Red List for conservation. Trends in Ecology & Evolution, 21(2), 71–76. https://doi.org/10.1016/j.tree.2005.10.010.

##plugins.themes.bootstrap3.article.details##

How to Cite
Omar, K., & Elgamal, I. (2021). Assess the Extinction Risk of Mountain Endemic Plants in Egypt Under the Current Climatic Condition: A Case Study of Endemic Silene Species. European Journal of Biology and Biotechnology, 2(5), 34-47. https://doi.org/10.24018/ejbio.2021.2.5.261