Ministry of Environment, Egypt
* Corresponding author
Ministry of Environment, Egypt

Article Main Content

The process of developing a conservation programme for endemic plant species, in particular those with a small geographical size in mountain ecosystems, whether in situ of ex situ, is a very complex matter, especially if data on the state of the environment and conservation are unavailable. Silene leucophylla and Silene oreosinaica are perennial plants endemic to St. Catherine Protected Area (SCPA), which locate at South Sinai, Egypt. For long time, the second species has not been observed in the field. As a result, the purpose of this study was to increase understanding of the two species' ecological and conservation statuses by: The first step is to confirm their existence on the ground; the second step is to determine the present ecological and conservation conditions through an extinction risk assessment by using IUCN Red List methodology; and the third step is the use of Species Distribution Model (SDM) to locate and extract current appropriate habitat suitability. The field research, which was conducted between March to December 2017, resulted in building knowledge of the current distribution, characteristics of current species populations, and status of ecology and habitat, in addition to identifying the main threats. Both species have been recorded in 20 major sites, in a very restricted area, particularly in a high mountain region (19 sites of Silene leucophylla and 3 sites of S. oreosinaica), with Extent of Occurrence about 468.2 km2 for Silene leucophylla and 24.5 km2 for S. oreosinaica. The population size was very small and fragmented and the extreme drought and overgrazing clearly affected both species. Based on the collected data, the extinction risk was calculated as Critically Endangered for S. oreosinaica and as Endangered for S. leucophylla according to IUCN Red List. For both species, appropriate habitat is concentrated in the high mountain ranges in the central north section of the SCPA, according to SDM. For Silene leucophylla, a presence probability of 20.5 km2 was anticipated, whereas for S. oreosinaica, a presence probability of 62.1 km2 had been predicted. Conservation methods are advocated both in situ (via recovery) and ex situ (by seed collecting and storage, awareness building, and grazing control).

References

  1. Pimm, S. L., Russell, G. J., Gittleman, J. L., & Brooks, T. M. (1995). The future of biodiversity. Science, 269(5222), 347–350.
     Google Scholar
  2. Le Roux, J. J., Hui, C., Castillo, M. L., Iriondo, J. M., Keet, J.-H., Khapugin, A. A., Médail, F., Rejmánek, M., Theron, G., & Yannelli, F. A. (2019). Recent anthropogenic plant extinctions differ in biodiversity hotspots and coldspots. Current Biology, 29(17), 2912–2918.
     Google Scholar
  3. Meyer, C., Weigelt, P., & Kreft, H. (2016). Multidimensional biases, gaps and uncertainties in global plant occurrence information. Ecology Letters, 19(8), 992–1006. https://doi.org/10.1111/ele.12624.
     Google Scholar
  4. Sporbert, M., Bruelheide, H., Seidler, G., Keil, P., Jandt, U., Austrheim, G., Biurrun, I., Campos, J. A., Čarni, A., Chytrý, M., Csiky, J., De Bie, E., Dengler, J., Golub, V., Grytnes, J.-A., Indreica, A., Jansen, F., Jiroušek, M., Lenoir, J., Welk, E. (2019). Assessing sampling coverage of species distribution in biodiversity databases. Journal of Vegetation Science, 30(4), 620–632. https://doi.org/10.1111/jvs.12763.
     Google Scholar
  5. Ceballos, G., Ehrlich, P. R., Barnosky, A. D., García, A., Pringle, R. M., & Palmer, T. M. (2015). Accelerated modern human–induced species losses: Entering the sixth mass extinction. Science Advances, 1(5), e1400253.
     Google Scholar
  6. He, F. (2009). Price of prosperity: economic development and biological conservation in China. Journal of Applied Ecology, 511–515.
     Google Scholar
  7. Silveira, F. A. O., Teixido, A. L., Zanetti, M., Pádua, J. G., De Andrade, A. C. S., & Da Costa, M. L. N. (2018). Ex situ conservation of threatened plants in Brazil: A strategic plan to achieve target 8 of the global strategy for plant conservation. Rodriguesia, 69(4), 1547–1555. https://doi.org/10.1590/2175-7860201869405.
     Google Scholar
  8. Omar, K., & Elgamal, I. (2021a). Can we save critically endangered relict endemic plant species? A case study of Primula boveana Decne ex Duby in Egypt. Journal for Nature Conservation, 61, 126005.
     Google Scholar
  9. Omar, K., & Elgamal, I. (2021b). IUCN Red List and Species Distribution Models as tools for the conservation of poorly known species: a case study of endemic plants Micromeria serbaliana and Veronica kaiseri in South Sinai, Egypt. Kew Bulletin, 1–20.
     Google Scholar
  10. Miller, R. M., Rodríguez, J. P., Aniskowicz-Fowler, T., Bambaradeniya, C., Boles, R., Eaton, M. A., Gärdenfors, U., Keller, V., Molur, S., & Walker, S. (2006). Extinction risk and conservation priorities. Science, 313(5786), 441.
     Google Scholar
  11. Miller, R. M., Rodríguez, J. P., ANISKOWICZ‐FOWLER, T., Bambaradeniya, C., Boles, R., Eaton, M. A., Gärdenfors, U. L. F., Keller, V., Molur, S., & Walker, S. (2007). National threatened species listing based on IUCN criteria and regional guidelines: current status and future perspectives. Conservation Biology, 21(3), 684–696.
     Google Scholar
  12. Miller, R. M. (2013). Threatened species: Classification systems and their applications. In Encyclopedia of Biodiversity (pp. 191–210). Elsevier. https://doi.org/doi:10.1016/b978-0-12-384719-5.00415-9.
     Google Scholar
  13. Anderson, S. (1994). Area and endemism. The Quarterly Review of Biology, 69(4), 451–471.
     Google Scholar
  14. Payne, J. L., & Finnegan, S. (2007). The effect of geographic range on extinction risk during background and mass extinction. Proceedings of the National Academy of Sciences, 104(25), 10506–10511.
     Google Scholar
  15. Fontaine, B., Bouchet, P., Van Achterberg, K., Alonso-Zarazaga, M. A., Araujo, R., Asche, M., Aspöck, U., Audisio, P., Aukema, B., & Bailly, N. (2007). The European union’s 2010 target: putting rare species in focus. Biological Conservation, 139(1–2), 167–185.
     Google Scholar
  16. IUCN Standards and Petitions Committee. (2019). Guidelines for Using the IUCN Red List Categories and Criteria, Version 14. 1(August), 1–60.
     Google Scholar
  17. Lamoreux, J., Resit Akçakaya, H., Bennun, L., Collar, N. J., Boitani, L., Brackett, D., Bräutigam, A., Brooks, T. M., da Fonseca, G. A. B., Mittermeier, R. A., Rylands, A. B., Gärdenfors, U., Hilton-Taylor, C., Mace, G., Stein, B. A., & Stuart, S. (2003). Value of the IUCN Red List. Trends in Ecology & Evolution, 18(5), 214–215. https://doi.org/10.1016/S0169-5347(03)00090-9.
     Google Scholar
  18. de Grammont, P. C., & Cuarón, A. D. (2006). An evaluation of threatened species categorization systems used on the American continent. Conservation Biology, 20(1), 14–27.
     Google Scholar
  19. Mace, G. M., Collar, N. J., Gaston, K. J., Hilton-Taylor, C., Akçakaya, H. R., Leader-Williams, N., Milner-Gulland, E. J., & Stuart, S. N. (2008). Quantification of extinction risk: IUCN’s system for classifying threatened species. Conservation Biology, 22(6), 1424–1442. https://doi.org/10.1111/j.1523-1739.2008.01044.x.
     Google Scholar
  20. Vié, J.-C., Hilton-Taylor, C., Pollock, C., Ragle, J., Smart, J., Stuart, S., & Tong, R. (2008). The IUCN Red List: a Key Conservation Tool. In The 2008 Review of The IUCN Red List of Threatened Species. IUCN Gland,. https://www.iucn.org/sites/dev/files/import/downloads/the_iucn_red_list_a_key_conservation_tool_1.pd.
     Google Scholar
  21. Elith, J., Graham, C. H., Anderson, R. P., Ferrier, S., Guisan, A., Hijmans, R. J., Huettmann, F., Leathwick, J. R., Lehmann, A., & Li, J. (2006). Novel methods improve prediction of species’ distributions from occurrence data. Ecography 29: 129-151. Peterson AT, Phillips SJ, Richardson KS, Scachetti-Pereira R, Schapire RE, Soberón J., Williams S, Wisz MS, Zimmermann NE.
     Google Scholar
  22. Elith, J., & Leathwick, J. R. (2009). Species Distribution Models: Ecological Explanation and Prediction Across Space and Time. Annual Review of Ecology, Evolution and Systematics, 40, 677–697. https://doi.org/10.1146/annurev.ecolsys.110308.120159.
     Google Scholar
  23. McSHEA, W. (2014). What are the roles of species distribution models in conservation planning? Environmental Conservation, 41(2), 93–96.
     Google Scholar
  24. Raxworthy, C. J., Martinez-Meyer, E., Horning, N., Nussbaum, R. A., Schneider, G. E., Ortega-Huerta, M. A., & Peterson, A. T. (2003). Predicting distributions of known and unknown reptile species in Madagascar. Nature, 426(6968), 837–841.
     Google Scholar
  25. Rushton, S. P., Ormerod, S. J., & Kerby, G. (2004). New paradigms for modelling species distributions? Journal of Applied Ecology, 41(2), 193–200.
     Google Scholar
  26. Khafagi, O., Hatab, E. E., & Omar, K. (2011). Predicting the potential geographical distribution of Nepeta septemcrenata in Saint Katherine Protectorate, South Sinai, Egypt using Maxent. Academia Arena, 3(7), 45–50.
     Google Scholar
  27. Khafagi, O., Hatab, E. E., & & Omar, K. (2013). Ecological Niche Modeling As a Tool for Conservation Planning: Suitable Habitat for Hypericum sinaicum in South Sinai, Egypt. Universal Journal of Environmental Research and Technology., 2(6), 515–524.
     Google Scholar
  28. Irfan-Ullah, M., Amarnath, G., Murthy, M. S. R., & Peterson, A. T. (2007). Mapping the geographic distribution of Aglaia bourdillonii Gamble (Meliaceae), an endemic and threatened plant, using ecological niche modeling BT - Plant Conservation and Biodiversity (D. L. Hawksworth & A. T. Bull (eds.); pp. 343–351). Springer Netherlands. https://doi.org/10.1007/978-1-4020-6444-9_22.
     Google Scholar
  29. Ray, R., Gururaja, K. V., & Ramchandra, T. V. (2011). Predictive distribution modeling for rare Himalayan medicinal plant Berberis aristata DC. Journal of Environmental Biology, 32(6), 725–730.
     Google Scholar
  30. Adhikari, D., Barik, S. K., & Upadhaya, K. (2012). Habitat distribution modelling for reintroduction of Ilex khasiana Purk., a critically endangered tree species of northeastern India. Ecological Engineering, 40, 37–43.
     Google Scholar
  31. Kaky, E., & Gilbert, F. (2019). Assessment of the extinction risks of medicinal plants in Egypt under climate change by integrating species distribution models and IUCN Red List criteria. Journal of Arid Environments, 170, 103988.
     Google Scholar
  32. Hughes, C., & Eastwood, R. (2006). Island radiation on a continental scale: Exceptional rates of plant diversification after uplift of the Andes. Proceedings of the National Academy of Sciences, 103(27), 10334–10339. https://doi.org/10.1073/pnas.0601928103.
     Google Scholar
  33. Khafagi, O., Hatab, E. E., & Omar, K. (2012). Challenges towards Hypericum sinaicum conservation in south Sinai, Egypt. Jordan Journal of Biological Sciences, 6(2), 116–126.
     Google Scholar
  34. Gaston, K. J. (1998). Rarity as double jeopardy. Nature, 394(6690), 229–230.
     Google Scholar
  35. Whittaker, R. J., & Fernández-Palacios, J. M. (2007). Island biogeography: ecology, evolution, and conservation. Oxford University Press.
     Google Scholar
  36. Zahran, M. A., Wafaa, A. M., Samy, A. A., & Omran, G. N. (2015). Endemic species in Sinai peninsula, Egypt, with particular reference to Saint Katherine protectorate: I-ecological features. J. Environ. Sci, 44(4), 589–609.
     Google Scholar
  37. Carlquist, S. J. (1974). Island biology. Columbia University Press.
     Google Scholar
  38. Strid, A. (1986). The mountain flora of Greece with special reference to the Anatolian element. Proceedings of the Royal Society of Edinburgh, Section B: Biological Sciences, 89, 59–68.
     Google Scholar
  39. Shehata, A. A., & Kamel, W. M. (2007). A contribution to the palynological studies of the endemic flora of Sinai, Egypt. Roczniki Akademii Rolniczej w Poznaniu. Botanika-Steciana, 11.
     Google Scholar
  40. Valderrábano, M., Gil, T., Heywood, V., & de Montmollin, B. (eds. . (2018). Conserving wild plants in the south and east Mediterranean region (Issue BOOK_B). Union internationale pour la conservation de la nature.
     Google Scholar
  41. Omar, K. (2014). Primula boveana. The IUCN Red List of Threatened Species 2014: e.T163968A1015883. https://doi.org/10.2305/IUCN.UK.2014-3.RLTS.T163968A1015883.en.
     Google Scholar
  42. Omar, K. (2017a). Bufonia multiceps. The IUCN Red List of Threatened Species 2017: e. T84119945A84119949.
     Google Scholar
  43. Omar, K. (2017a). Euphorbia obovata. The IUCN Red List of Threatened Species 2017: e. T84119968A84119977.
     Google Scholar
  44. Omar, K. (2017b). Phlomis aurea. The IUCN Red List of Threatened Species 2017: e. T84119983A84119987.
     Google Scholar
  45. Omar, K. (2017c). Rosa arabica. The IUCN Red List of Threatened Species 2017: e. T84120072A84120074.
     Google Scholar
  46. Bratteler, M., Baltisberger, M., & Widmer, A. (2006). QTL analysis of intraspecific differences between two Silene vulgaris ecotypes. Annals of Botany, 98(2), 411–419.
     Google Scholar
  47. Boulos, L. (2009). Flora of Egypt checklist, revised annotated edition. Al-Hadara Publishing, Cairo, 198–201.
     Google Scholar
  48. Radford, E. A., Catullo, G., & and Montmollin, B. de. (eds). (2011). Important Plant Areas of the south and east Mediterranean region : priority sites for conservation. Gland, Switzerland and Malaga, Spain: IUCN. (viii +). Gland, Switzerland and Malaga, Spain: IUCN. https://portals.iucn.org/library/sites/library/files/documents/2011-014.pdf.
     Google Scholar
  49. Rabei, S., Nada, R., & El Gamal, I. (2016). Bio-systematic study on the endemic Silene oreosinaica Chowdhuri from Sinai, Egypt. Scientific Journal for Damietta Faculty of Science, 6(2), 183–188.
     Google Scholar
  50. Boulos, L. (1999). Flora of Egypt, vol. 1. Cairo: Al Hadara Publishing, 417.
     Google Scholar
  51. El Hadidi, M. N., & Hosni, H. A. (2000). Flora Aegyptiaca: part 1-vol. 1, part 2. Palm Press.
     Google Scholar
  52. Hosny, A. I., El Hadidi, M. N., & Shamso, E. M. (1992). Taxonomic Studies of Silenoideae (Cartophyllaceae) in Egypt. 1. Systematic revision of the genus Silene L. Taeckholmia, 14, 1–36.
     Google Scholar
  53. Rabei, S., Nada, R., & EL Gamal, I. (2020). Studies on five Silene L. Taxa in Saint Catherine Protectorate, South Sinai, Egypt. Jordan Journal of Biological Sciences, 13(1), 59–67.
     Google Scholar
  54. Täckholm, V. (1974). Students’ Flora of Egypt. –Cairo University press, Cairo.
     Google Scholar
  55. Moustafa, A. A., & Klopatek, J. M. (1995). Vegetation and landforms of the Saint Catherine area, southern Sinai, Egypt. Journal of Arid Environments, 30(4), 385–395. https://doi.org/https://doi.org/10.1006/jare.1995.0033.
     Google Scholar
  56. Omar, K. (2012). Vegetation, soil and grazing analysis in Saint Katherine Protectorate, South Sinai, Egypt. NeBIO, 3(2), 80–92.
     Google Scholar
  57. Hatab, E. E. (2009). Ecological studies on the Acacia Species and Ecosystem Restoration in the Saint Katherine Protectorate, South Sinai, Egypt. Al-Azhar University.
     Google Scholar
  58. Fayed, A. A., El-Garf, I. A., Abdel-Khalik, K. N., & Osman, A. K. (2004). Floristic survey of the mountainous region of South Sinai, St Katherine’s Protectorate, Medicinal Plants Conservation Project. Egypt, Report, 146.
     Google Scholar
  59. Shaltout, K., Heneidy, S., Al-Sodany, Y., M., M., Eid, E., Hatim, M., & E., E.-G. (2004). Floristic Survey of the Mountainous Region of South Sinai; St. Katherine’s Protectorate, Medicinal Plants Conservation Project. Egypt.
     Google Scholar
  60. Moustafa, A. A., Zaghloul, M. S., El-Wahab, R. H. A., & Shaker, M. (2001). Evaluation of plant diversity and endemism in Saint Catherine Protectorate, South Sinai, Egypt. Egyptian Journal of Botany, 41(1), 121–139.
     Google Scholar
  61. Khedr, A. (2007). Assessment, classification, and analysis of microhabitats supporting globally significant plant species. Conservation and Sustainable Use of Medicinal Plants in Arid and Semi-Arid Eco-Systems Project. Saint Katherine Protectorate, Egypt, Final Report: EEAA, GEF & UNDP, Cairo, Egypt, 145.
     Google Scholar
  62. Cox, G. (1990). Laboratory manual of general ecology 6th Ed. Dubuque, Iowa: WIlliam C. Brown, 143 pp.
     Google Scholar
  63. IUCN. (2012). IUCN Red List Categories and Criteria: Version 3.1. Second edition. In Gland, Switzerland and Cambridge, UK: IUCN.: Vol. iv. https://portals.iucn.org/library/node/10315.
     Google Scholar
  64. Jackson, M. L. (1967). Soil chemical analysis. Prentice Hall of India Pvt. Ltd., New Delhi, 498 p.
     Google Scholar
  65. Braun-Blanquet, J. (1964). Plant sociology. Translated by GD Fuller and HS Conard Mc-Graw-Hill Book Co. Inc. New York, 865.
     Google Scholar
  66. Assi, R. (2007). MP Threat Analysis and Threat Reduction Assessment Report. In Conservation and sustainable use of medicinal plants in arid and semi-arid ecosystems project.
     Google Scholar
  67. Kumar, S., Stohlgren, T. J., & Chong, G. W. (2006). Spatial heterogeneity influences native and nonnative plant species richness. Ecology, 87(12), 3186–3199. https://doi.org/10.1890/0012-9658(2006)87[3186:SHINAN]2.0.CO;2.
     Google Scholar
  68. Guisan, A., Graham, C. H., Elith, J., Huettmann, F., & Group, N. S. D. M. (2007). Sensitivity of predictive species distribution models to change in grain size. Diversity and Distributions, 13(3), 332–340.
     Google Scholar
  69. Pearson, R. G., Raxworthy, C. J., Nakamura, M., & Townsend Peterson, A. (2007). Predicting species distributions from small numbers of occurrence records: A test case using cryptic geckos in Madagascar. Journal of Biogeography, 34(1), 102–117. https://doi.org/10.1111/j.1365-2699.2006.01594.x.
     Google Scholar
  70. Hijmans, R. J., Cameron, S. E., Parra, J. L., Jones, P. G. &, & Jarvis, A. (2005). Very high resolution interpolated climate surfaces for global land areas. International Journal of Climatology: A Journal of the Royal Meteorological Society, 25(15), 1965-1978.
     Google Scholar
  71. Graham, C. H., & Hijmans, R. J. (2006). A comparison of methods for mapping species ranges and species richness. Global Ecology and Biogeography, 15(6), 578–587.
     Google Scholar
  72. Murienne, J., Guilbert, E., & Grandcolas, P. (2009). Species’ diversity in the New Caledonian endemic genera Cephalidiosus and Nobarnus (Insecta: Heteroptera: Tingidae), an approach using phylogeny and species’ distribution modelling. Biological Journal of the Linnean Society, 97(1), 177–184. https://doi.org/10.1111/j.1095-8312.2008.01184.x.
     Google Scholar
  73. de Luis, M., Bartolomé, C., García Cardo, Ó., & Álvarez-Jiménez, J. (2018). Gypsophila bermejoi G. López: A possible case of speciation repressed by bioclimatic factors. PloS One, 13(1), e0190536.
     Google Scholar
  74. Bosso, L., Di Febbraro, M., Cristinzio, G., Zoina, A., & Russo, D. (2016). Shedding light on the effects of climate change on the potential distribution of Xylella fastidiosa in the Mediterranean basin. Biological Invasions, 18(6), 1759–1768.
     Google Scholar
  75. Smeraldo, S., Di Febbraro, M., Bosso, L., Flaquer, C., Guixé, D., Lisón, F., Meschede, A., Juste, J., Prüger, J., & Puig-Montserrat, X. (2018). Ignoring seasonal changes in the ecological niche of non-migratory species may lead to biases in potential distribution models: lessons from bats. Biodiversity and Conservation, 27(9), 2425–2441.
     Google Scholar
  76. Kalle, R., Ramesh, T., Qureshi, Q., & Sankar, K. (2013). Predicting the distribution pattern of small carnivores in response to environmental factors in the Western Ghats. PLoS One, 8(11), e79295.
     Google Scholar
  77. Ortega-Huerta, M. A. ., & Peterson, A. T. (2008). Modeling ecological niches and predicting geographic distributions: A test of six presence-only methods. Revista Mexicana de La Biodiversidad, 1(1), 205–216.
     Google Scholar
  78. Hernandez, P. A., Graham, C. H., Master, L. L., & Albert, D. L. (2006). The effect of sample size and species characteristics on performance of different species distribution modeling methods. Ecography, 29(5), 773–785.
     Google Scholar
  79. Papeş, M., & Gaubert, P. (2007). Modelling ecological niches from low numbers of occurrences: Assessment of the conservation status of poorly known viverrids (Mammalia, Carnivora) across two continents. Diversity and Distributions, 13(6), 890–902. https://doi.org/10.1111/j.1472-4642.2007.00392.x.
     Google Scholar
  80. Hoveka, L., Bezeng, B., Yessoufou, K., Boatwright, J., & Van der Bank, M. (2016). Effects of climate change on the future distributions of the top five freshwater invasive plants in South Africa. South African Journal of Botany, 102, 33–38.
     Google Scholar
  81. Choudhury, M. R., Deb, P., Singha, H., Chakdar, B., & Medhi, M. (2016). Predicting the probable distribution and threat of invasive Mimosa diplotricha Suavalle and Mikania micrantha Kunth in a protected tropical grassland. Ecological Engineering, 97, 23–31. https://doi.org/10.1016/j.ecoleng.2016.07.018.
     Google Scholar
  82. Işik, K. (2011). Rare and endemic species: Why are they prone to extinction? Turkish Journal of Botany, 35(4), 411–417. https://doi.org/10.3906/bot-1012-90.
     Google Scholar
  83. Balslev, H. (1988). Distribution patterns of Ecuadorean plant species. Taxon, 37(3), 567–577.
     Google Scholar
  84. Sklenář, P., & Jørgensen, P. M. (1999). Distribution patterns of paramo plants in Ecuador. Journal of Biogeography, 26(4), 681–691. https://doi.org/10.1046/j.1365-2699.1999.00324.x.
     Google Scholar
  85. Kessler, M. (2000). Elevational gradients in species richness and endemism of selected plant groups in the central Bolivian Andes. Plant Ecology, 149(2), 181–193. https://doi.org/10.1023/A:1026500710274.
     Google Scholar
  86. Colwell, R. K., & Lees, D. C. (2000). The mid-domain effect: geometric constraints on the geography of species richness. Trends in Ecology & Evolution, 15(2), 70–76.
     Google Scholar
  87. Brown, J. H. (2001). Mammals on mountainsides: elevational patterns of diversity. Global Ecology and Biogeography, 10(1), 101–109.
     Google Scholar
  88. Zohary, M. (1973). Geobotanical foundations of the Middle East. Stuttgart, G. Fischer.
     Google Scholar
  89. McNeely, J. A., Harrison, J., & Dingwall, P. (1994). Protecting nature: Regional reviews of protected areas. In IVth world congress on national parks and protected areas, Caracas, Venezuela.
     Google Scholar
  90. Castellano, M. A., Trappe, J. M., & Luoma, D. L. (2004). SEQUESTRATE FUNGI. In Biodiversity of Fungi (pp. 197–213). https://doi.org/10.1016/B978-012509551-8/50013-1.
     Google Scholar
  91. Shaltout, K., Ahmed, D. ., & Shabana, H. . (2015). Population structure and dynamics of the endemic species Phlomis aurea Decne in different habitats in southern Sinai Peninsula, Egypt. Global Ecology and Conservation, 4, 505–515.
     Google Scholar
  92. https://doi.org/https://doi.org/10.1016/j.gecco.2015.10.002.
     Google Scholar
  93. Schlesinger, W. H., Raikes, J. A., Hartley, A. E., & Cross, A. F. (1996). On the Spatial Pattern of Soil Nutrients in Desert Ecosystems. Ecology, 77(2), 364–374. https://doi.org/10.2307/2265615.
     Google Scholar
  94. Dunkerley, D. L., & Brown, K. J. (1997). Desert soils. Arid Zone Geomorphology: Process, Form and Change in Drylands’. 2nd Edn.(Ed. DSG Thomas.) pp. 55–68.
     Google Scholar
  95. Abd El-Wahab, R., & Moustafa, A. (2006). Vegetation and Environment of Gebel Serbal, South Sinai, Egypt. Catrina, 1, 9–20.
     Google Scholar
  96. El-Demerdash, M. (2007). The Ex Situ Conservation Technical Report on Propagation of Medicinal Plants. MPCP, The Egyptian Environmental Affairs Agency (EEAA).
     Google Scholar
  97. El-Mawey, M. (2008). Technical Report on Restoration of Endangered Plant Species in St. Catherine Protectorate. MPCP, Egyptian Environmental Affairs Agency (EEAA).
     Google Scholar
  98. Pennington, R. T., Lavin, M., Särkinen, T., Lewis, G. P., Klitgaard, B. B., & Hughes, C. E. (2010). Contrasting plant diversification histories within the Andean biodiversity hotspot. Proceedings of the National Academy of Sciences of the United States of America, 107(31), 13783–13787. https://doi.org/10.1073/pnas.1001317107.
     Google Scholar
  99. Särkinen, T. E., Marcelo-Peña, J. L., Daza Yomona, A., Simon, M. F., Toby Pennington, R., & Hughes, C. E. (2011). Underestimated endemic species diversity in the dry inter-Andean valley of the Río Marañón, northern Peru: An example from Mimosa (Leguminosae, Mimosoideae). Taxon, 60(1), 139–150.
     Google Scholar
  100. https://doi.org/10.1002/tax.601012.
     Google Scholar
  101. Langhammer, P. F., Bakarr, M. I., Bennun, L. A., Brooks, T. M., Clay, R. P., Darwall, W., De Silva, N., Edgar, G. J., Eken, G., Fishpool, L. D. C., Fonseca, G. A. B. da, Foster, M. N., Knox, D. H., Matiku, P., Radford, E. A., Rodrigues, A. S. L., Salaman, P., & Sechrest, W. A. W. (2007). Identification and gap analysis of key biodiversity areas: targets for comprehensive protected area systems. In Gland, Switzerland: IUCN. Gland, Switzerland: IUCN.
     Google Scholar
  102. https://doi.org/10.2305/iucn.ch.2006.pag.15.en.
     Google Scholar
  103. Moustafa, A., & Zayed, A. (1996). Effect of environmental factors on the flora of alluvial fans in southern Sinai. Journal of Arid Environments, 32(4), 431–443.
     Google Scholar
  104. Pavlik, B. M. (1997). Perspectives, Tools, and Institutions for Conserving Rare Plants. The Southwestern Naturalist, 42(4), 375–383. http://www.jstor.org/stable/30055302.
     Google Scholar
  105. Rodrigues, A. S. L., Pilgrim, J. D., Lamoreux, J. F., Hoffmann, M., & Brooks, T. M. (2006). The value of the IUCN Red List for conservation. Trends in Ecology & Evolution, 21(2), 71–76. https://doi.org/10.1016/j.tree.2005.10.010.
     Google Scholar