Sava Healthcare Limited, India
Sava Healthcare Limited, India
* Corresponding author

Article Main Content

In this review, we highlight the complications of COVID-19 affected patients due to microbial infections, which increase the severity of the disease. Nearly 50% of COVID-19 affected patients among non-survivors were either co-infected with bacterial, fungal, or viral pathogens. During ongoing COVID-19 pandemic, it has been a challenge for developing and under developing countries to identify co-infections in patients due to limited healthcare facilities and high cost for the diagnostic tests. Since several microbial co-infections are associated with COVID-19, there is need to diagnose such co-infections in early stage so that required control measures would be taken to avoid the further health risks. People with severe COVID-19, COVID-19 patients in intensive care units (ICU), are susceptible to bacterial and fungal infections. Bacterial pathogens, representing less than 14% of patients with reported infections include Mycoplasma pneumoniae, Haemophilus influenzae and Pseudomonas aeruginosa while fungal sps include Aspergillus, Candida auris, black fungus etc that invade the brain or cause patients to lose vision. The unregulated and inappropriate use of antibiotics, antimicrobial drugs and alcohol based hand sanitizers may enhance the evolution of AMR phenotypes among infectious pathogens.

References

  1. Nalbandian A., Sehgal K., Gupta A., Madhavan M., McGroder C., Stevens J., et al. Post-acute COVID-19 syndrome. Nat Med. 2021; 27(4):601-615. doi: 10.1038/s41591-021-01283-z.
     Google Scholar
  2. Tang X., Wu C., Li X., Song Y., Yao X., Wu X. On the origin and continuing evolution of SARS-CoV-2. Natl Sci Rev. 2020; nwaa036. doi: 10.1093/nsr/nwaa036.
     Google Scholar
  3. Raj C., Kandaswamy D., Danduga R., Rajasabapathy R., James R., et al. COVID-19: molecular pathophysiology, genetic evolution and prospective therapeutics-a review. Arch Microbiol. 2021; 203(5):2043-2057 doi: 10.1007/s00203-021-02183-z.
     Google Scholar
  4. Sogaard K., Baettig V., Osthoff M., Marsch S., Leuzinger K., Schweitzer M., et al. Community-acquired and hospital-acquired respiratory tract infection and bloodstream infection in patients hospitalized with COVID-19 pneumonia. J Intensive Care. 2021;18; 9 (1):10.doi: 10.1186/s40560-021-00526-y
     Google Scholar
  5. Yadav P., Nyayanit D., Sahay R., Sarkale P., Pethani J., Patil S., et al. Isolation and characterization of the new SARS-CoV-2 variant in travellers from the United Kingdom to India: VUI-202012/01 of the B.1.1.7 lineage. J Travel Med. 2021; 28 (2):taab009. doi: 10.1093/jtm/taab009.
     Google Scholar
  6. Galloway S., Paul P., MacCannell D., Johansson M., Brooks J., MacNeil A., et al. Emergence of SARS-CoV-2 B.1.1.7 Lineage - United States, December 29, 2020-January 12, 2021. MMWR Morb Mortal Wkly Rep. 2021; 70(3):95-99. doi: 10.15585/mmwr.mm7003e2.
     Google Scholar
  7. Davies N., Abbott S., Barnard R., Jarvis C., Kucharski A., Munday J., et al. COVID-19 Working Group; COVID-19 Genomics UK (COG-UK) Consortium, Diaz-Ordaz K., Keogh R., Eggo R.M., Funk S., Jit M., Atkins K., Edmunds W. Estimated transmissibility and impact of SARS-CoV-2 lineage B.1.1.7 in England. Science 2021; 372(6538):eabg3055. doi: 10.1126/science.abg3055
     Google Scholar
  8. Sallam M., Mahafzah A. Molecular Analysis of SARS-CoV-2 Genetic Lineages in Jordan: Tracking the Introduction and Spread of COVID-19 UK Variant of Concern at a Country Level. Pathogens. 2021; 10(3):302. doi: 10.3390/pathogens10030302.
     Google Scholar
  9. Benvenuto D., Angeletti S., Giovanetti M., Bianchi M., Pascarella S., Cauda R., et al. Evolutionary analysis of SARS-CoV-2: how mutation of Non-Structural Protein 6 (NSP6) could affect viral autophagy. J Infect. 2020; 81(1):e24-e27. doi: 10.1016/j.jinf.2020.03.058.
     Google Scholar
  10. Wibmer C.K., Ayres F., Hermanus T, Madzivhandila M., Kgagudi P., Oosthuysen B., et al. SARS-CoV-2 501Y.V2 escapes neutralization by South African COVID-1 McCallum 9 donor plasma. Nat Med, 2021; 27: 622–25. https://doi.org/10.1038/s41591-021-01285-x.
     Google Scholar
  11. Adam D. The rush to study fast spreading coronavirus variants. Nature. 2021; 594 19-20. doi: 10.1038/d41586-021-01390-4.
     Google Scholar
  12. Fillatre P., Dufour M.-J., Behillil S., Vatan R., Reusse P., Gabellec A., et al. A new SARS-CoV-2 variant poorly detected by RT-PCR on nasopharyngeal samples, with high lethality. medRxiv 2021;05.05.21256690; doi: 10.1101/2021.05.05.21256690.
     Google Scholar
  13. McCallum M., Bassi J., Marco A.D., CHEN A., Walls A.C., Iulio J.D., Tortorici A., et al. SARS-CoV-2 immune evasion by variant B.1.427/B.1.429. bioRxiv. 2021; 437925. doi: 10.1101/2021.03.31.437925.
     Google Scholar
  14. Zhou W., Wang W. Fast-spreading SARS-CoV-2 variants: challenges to and new design strategies of COVID-19 vaccines. Sig Transduct Target Ther. 2021; 6, 226. https://doi.org/10.1038/s41392-021-00644-x.
     Google Scholar
  15. Francisco R. Jr, Benites L., Lamarca A., de Almeida L., Hansen A., Gularte J., et al. Pervasive transmission of E484K and emergence of VUI-NP13L with evidence of SARS-CoV-2 co-infection events by two different lineages in Rio Grande do Sul, Brazil. Virus Res. 2021; 296:198345. doi: 10.1016/j.virusres.2021.198345.
     Google Scholar
  16. Sapkal G., Yadav P., Ella R., Abraham P., Patil D., Gupta N., et al. Neutralization of B.1.1.28 P2 variant with sera of natural SARS-CoV-2 infection and recipients of inactivated COVID-19 vaccine Covaxin. J Travel Med. 2021; taab077. doi: 10.1093/jtm/taab077.
     Google Scholar
  17. Yadav P., Mohandas S., Sarkale P., Nyayanit D., Shete A., Sahay R., et al. Isolation of SARS-CoV-2 B.1.1.28.2 P2 variant and pathogenicity comparison with D614G variant in hamster model. bioRxiv [Preprint]. 2021. doi: 10.1101/2021.05.24.445424.
     Google Scholar
  18. Tablizo F., Kim K.M., Lapid C.M., Castro M.J.R., Yangzon M.S.L., Maralit B.A., Ayes M.E.C., et al. Genome sequencing and analysis of an emergent SARS-CoV-2 variant characterized by multiple spike protein mutations detected from the Central Visayas Region of the Philippines. medRxiv 2021;03.03.21252812; doi: 10.1101/2021.03.03.21252812.
     Google Scholar
  19. Vareille M., Kieninger E., Edwards M., Regamey N. The airway epithelium: soldier in the fight against respiratory viruses. Clin Microbiol Rev. 2011; 24(1):210-29. doi: 10.1128/CMR.00014-10.
     Google Scholar
  20. Mirzaei R. Goodarzi P., Asadi M., Soltani A., Aljanabi H., Jeda A., et al. Bacterial co-infections with SARS-CoV-2. IUBMB Life. 2020; 72(10):2097-2111. doi: 10.1002/iub.2356
     Google Scholar
  21. Denney L, Ho L. The role of respiratory epithelium in host defence against influenza virus infection. Biomed J. 2018; 41(4):218-233. doi: 10.1016/j.bj.2018.08.004.
     Google Scholar
  22. Calcagno A., Ghisetti V., Burdino E., Trunfio M., Allice T., Boglione L., et al. Co-infection with other respiratory pathogens in COVID-19 patients. Clin Microbiol Infect. 2021; 27(2):297-298. doi: 10.1016/j.cmi.2020.08.012.
     Google Scholar
  23. Sarkar S., Khanna P., Singh A. Impact of COVID-19 in patients with concurrent co-infections: A systematic review and meta-analyses. J Med Virol. 2021a; 93(4):2385-2395. doi: 10.1002/jmv.26740.
     Google Scholar
  24. Lansbury L., Lim B., Baskaran V., Lim W. Co-infections in people with COVID-19: a systematic review and meta-analysis. J Infect. 2020; 81(2):266-275. doi: 10.1016/j.jinf.2020.05.046.
     Google Scholar
  25. Agrawal A., Murphy T. Haemophilus influenzae infections in the H. influenzae type b conjugate vaccine era. J Clin Microbiol. 2011; 49(11):3728-3732. doi: 10.1128/JCM.05476-11.
     Google Scholar
  26. Cusumano J., Dupper A., Malik Y., Gavioli E., Banga J., Caban A.B., et al. Staphylococcus aureus bacteremia in patients infected with COVID-19: A case series. Open Forum Infect Dis. 2020; 7(11):ofaa518. doi: 10.1093/ofid/ofaa518.
     Google Scholar
  27. Duployez C., Le Guern R., Tinez C., Lejeune A.L., Robriquet L., Six S., et al. Panton-valentine leukocidin-secreting Staphylococcus aureus pneumonia complic Wibmer ating COVID-19. Emerg Infect Dis. 2020; 26(8):1939-1941. doi: 10.3201/eid2608.201413.
     Google Scholar
  28. Dudoignon E., Caméléna F., Deniau B., Habay A., Coutrot M., Ressaire Q., et al. Bacterial Pneumonia in COVID-19 Critically Ill Patients: A Case Series. Clin Infect Dis. 2021; 72(5):905-906. doi: 10.1093/cid/ciaa762.
     Google Scholar
  29. Henriques-Normark B., Tuomanen E. The Pneumococcus: epidemiology, microbiology, and pathogenesis. Cold Spring Harb Perspect Med. 2013; 3(7):a010215. doi: 10.1101/cshperspect.a010215.
     Google Scholar
  30. Anton-Vazquez V., Clivillé R. Streptococcus pneumoniae co-infection in hospitalized patients with COVID-19. Eur J Clin Microbiol Infect Dis. 2021;19:1-3. doi: 10.1007/s10096-021-04166-w.
     Google Scholar
  31. Rodriguez-Nava G., Yanez-Bello M., Trelles-Garcia D., Chung C., Egoryan G., Friedman H.J. A retrospective study of co-infection of SARS-CoV-2 and Streptococcus pneumoniae in 11 hospitalized patients with severe covid-19 pneumonia at a single center. Med Sci Monit. 2020; 26:e928754. doi: 10.12659/MSM.928754.
     Google Scholar
  32. Cucchiari D., Pericàs J., Riera J., Gumucio R., Md E., Nicolás D. Pneumococcal superinfection in COVID-19 patients: A series of 5 cases. Med Clin (Engl Ed). 2020; 155(11):502-505. doi: 10.1016/j.medcle.2020.05.028.
     Google Scholar
  33. Cunningham M. Pathogenesis of group A streptococcal infections. Clin Microbiol Rev. 2000; 13(3):470-511. doi: 10.1128/cmr.13.3.470-511.2000.
     Google Scholar
  34. Kanwal S., Vaitla P. Streptococcus Pyogenes. 2020 Aug 10. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2021.
     Google Scholar
  35. Khaddour K., Sikora A., Tahir N., Nepomuceno D., Huang T. Case Report: The importance of novel coronavirus disease (Covid-19) and co-infection with other respiratory pathogens in the current pandemic. Am J Trop Med Hyg. 2020; 102(6):1208-1209. doi: 10.4269/ajtmh.20-0266.
     Google Scholar
  36. Asif M., Alvi I., Rehman S. Insight into Acinetobacter baumannii: pathogenesis, global resistance, mechanisms of resistance, treatment options, and alternative modalities. Infect Drug Resist. 2018; 21(11):1249-1260. doi: 10.2147/IDR.S166750.
     Google Scholar
  37. Durán-Manuel E., Cruz-Cruz C., Ibáñez-Cervantes G., Bravata-Alcantará J., Sosa-Hernández O., Delgado-Balbuena L., et al. Clonal dispersion of Acinetobacter baumannii in an intensive care unit designed to patients COVID-19. J Infect Dev Ctries. 2021; 15(1):58-68. doi: 10.3855/jidc.13545.
     Google Scholar
  38. Sharifipour E., Shams S., Esmkhani M., Khodadadi J., Fotouhi-Ardakani R., Koohpaei A., et al. Evaluation of bacterial co-infections of the respiratory tract in Covid-19 patients admitted to ICU. BMC Infect Dis. 2020; 20(1):646. doi: 10.1186/s12879-020-05374-z.
     Google Scholar
  39. Dissanayake T.K., Yan B., Ng A. C.-K., Zhao H., Chan G., Yip C.C.Y., et al. Differential role of sphingomyelin in influenza virus, rhinovirus and SARS-CoV-2 infection of Calu-3 cells. J Gen Virol. 2021;102:001593.DOI 10.1099/jgv.0.001593
     Google Scholar
  40. Aizaki H., Morikawa K., Fukasawa M., Hara H., Inoue Y., Tani H., et al. Critical role of virion-associated cholesterol and sphingolipid in hepatitis C virus infection. J Virol. 2008; 82(12):5715-24. doi: 10.1128/JVI.02530-07.
     Google Scholar
  41. Miller M., Adhikary S., Kolokoltsov A., Davey R. Ebolavirus requires acid sphingomyelinase activity and plasma membrane sphingomyelin for infection. J Virol. 2012; 86:7473–7483.
     Google Scholar
  42. Otsuki N., Sakata M., Saito K., Okamoto K., Mori Y., Hanada K., et al. Both sphingomyelin and cholesterol in the host cell membrane are essential for Rubella virus entry. J Virol. 2017; 92(1):e01130-17. doi: 10.1128/JVI.01130-17.
     Google Scholar
  43. Pastenkos G., Miller L., Pritchard M., Nicola V. Role of sphingomyelin in Alpha herpesvirus entry. J Virol. 2019; 93(5):e01547-18. doi: 10.1128/JVI.01547-18.
     Google Scholar
  44. Shen B., Yi X., Sun Y., Bi X., Du J., Zhang C., et al. et al., Proteomic and metabolomic characterization of covid-19 Patient Sera. Cell. 2020: 182:59–72. DOI: https://doi.org/10.1016/j.cell.2020.05.032.
     Google Scholar
  45. Carpinteiro A., Gripp B., Hoffmann M., Pöhlmann S., Hoertel N., Edwards M.J., et al. Inhibition of acid sphingomyelinase by ambroxol prevents SARS-CoV-2 entry into epithelial cells. J Biol Chem. 2021; 296:100701. doi: 10.1016/j.jbc.2021.100701.
     Google Scholar
  46. Pemán J., Ruiz-Gaitán A., García-Vidal C., Salavert M., Ramírez P., Puchades F., et al. Fungal co-infection in covid-19 patients: Should we be concerned? Rev Iberoam Micol. 2020; 37(2):41-46. doi: 10.1016/j.riam.2020.07.001.
     Google Scholar
  47. Marshall J., Murthy S., Diaz J. WHO Working Group on the Clinical Characterization and management of Covid-19 infection. Fungal infections should be part of the core outcome set for COVID-19 - Authors' reply. Lancet Infect Dis. 2020; S1473-3099(20)30681-2. doi: 10.1016/S1473-3099(20)30681-2.
     Google Scholar
  48. Song G., Liang G., Liu W. Fungal co-infections associated with global COVID-19 pandemic: A clinical and diagnostic perspective from China. Mycopathologia. 2020; 185(4):599-606. doi: 10.1007/s11046-020-00462-9.
     Google Scholar
  49. Garcia-Vidal C., Sanjuan G., Moreno-García E., Puerta-Alcalde P., Garcia-Pouton N., Chumbita M., et al. Incidence of co-infections and superinfections in hospitalized patients with COVID-19: a retrospective cohort study. Clin Microbiol Infect. 2021; 27(1):83-88. doi: 10.1016/j.cmi.2020.07.041.
     Google Scholar
  50. Chen X., Liao B., Cheng L., Peng X., Xu X., Li Y., et al. The microbial coinfection in COVID-19. Appl Microbiol Biotechnol. 2020; 104(18):7777-7785. doi:10.1007/s00253-020-10814-6
     Google Scholar
  51. Lai C., Yu W. COVID-19 associated with pulmonary aspergillosis: A literature review. J Microbiol Immunol Infect. 2021; 54(1):46-53. doi: 10.1016/j.jmii.2020.09.004.
     Google Scholar
  52. Koehler P., Bassetti M., Chakrabarti A., Chen S.C.A., Colombo A.L., Hoenigl M., et al. Defining and managing COVID-19-associated pulmonary aspergillosis: the 2020 ECMM/ISHAM consensus criteria for research and clinical guidance. Lancet Infect Dis. 2021; 21(6):e149-e162. doi: 10.1016/S1473-3099(20)30847-1.
     Google Scholar
  53. van Arkel A., Rijpstra T., Belderbos H., van Wijngaarden P., Verweij P., Bentvelsen R. COVID-19-associated Pulmonary Aspergillosis. Am J Respir Crit Care Med. 2020; 202(1):132-135. doi: 10.1164/rccm.202004-1038LE.
     Google Scholar
  54. Sharma A., Hofmeyr A., Bansal A., Thakkar D., Lam L., Harrington Z., et al. COVID-19 associated pulmonary aspergillosis (CAPA): An Australian case report. Med Mycol Case Rep. 2021; 31:6-10. doi: 10.1016/j.mmcr.2020.06.002.
     Google Scholar
  55. Imoto W., Himura H., Matsuo K., Kawata S., Kiritoshi A., Deguchi R., et al. COVID-19-associated pulmonary aspergillosis in a Japanese man: A case report. J Infect Chemother. 2021; 27(6):911-914. doi: 10.1016/j.jiac.2021.02.026.
     Google Scholar
  56. Benedetti M., Alava K., Sagardia J., Cadena R., Laplume D., Capece P., et al. COVID-19 associated pulmonary aspergillosis in ICU patients: Report of five cases from Argentina. Med Mycol Case Rep. 2021; 31:24-28. doi: 10.1016/j.mmcr.2020.11.003.
     Google Scholar
  57. Prakash H., Chakrabarti A. Global epidemiology of mucormycosis. J Fungi (Basel). 2019; 5(1):26. doi: 10.3390/jof5010026.
     Google Scholar
  58. Hunt E. Recognizing mucormycosis in an immunocompromised patient. JAAPA. 2020; 33(12):23-25. doi: 10.1097/01.JAA.0000721656.13462.67.
     Google Scholar
  59. Mehta S., Pandey A. Rhino-Orbital Mucormycosis Associated With COVID-19. Cureus. 2020; 12(9):e10726. doi: 10.7759/cureus.10726.
     Google Scholar
  60. Sen M., Lahane S., Lahane T., Parekh R., Honavar S. Mucor in a Viral Land: A Tale of Two Pathogens. Indian J Ophthalmol. 2021 F; 69(2):244-252. doi: 10.4103/ijo.IJO_3774_20.
     Google Scholar
  61. Mekonnen Z., Ashraf D., Jankowski T., Grob S., Vagefi M., Kersten R., et al. Acute invasive rhino-orbital mucormycosis in a patient with COVID-19-associated acute respiratory distress syndrome. Ophthalmic Plast Reconstr Surg. 2021; 37(2):e40-e80. doi: 10.1097/IOP.0000000000001889.
     Google Scholar
  62. Revannavar S., Supriya P., Samaga L., Vineeth K. COVID-19 triggering mucormycosis in a susceptible patient: a new phenomenon in the developing world? BMJ Case Rep. 2021; 14(4):e241663. doi: 10.1136/bcr-2021-241663.
     Google Scholar
  63. Raut A., Huy N.T. Rising incidence of mucormycosis in patients with COVID-19: another challenge for India amidst the second wave? Lancet Respir Med. 2021; S2213-2600(21)00265-4. doi: 10.1016/S2213-2600(21)00265-4. Epub ahead of print.
     Google Scholar
  64. Singh A., Singh R., Joshi S., Misra A. Mucormycosis in COVID-19: A systematic review of cases reported worldwide and in India. Diabetes Metab Syndr. 2021; 15(4):102146. doi: 10.1016/j.dsx.2021.05.019.
     Google Scholar
  65. Sarkar S., Gokhale T., Choudhury S.S., Deb A.K. COVID-19 and orbital mucormycosis. Indian J Ophthalmol. 2021b; 69(4):1002-1004. doi: 10.4103/ijo.IJO_3763_20.
     Google Scholar
  66. Spellberg B., Ibrahim A. Recent advances in the treatment of mucormycosis. Curr Infect Dis Rep. 2010; 12(6):423-9. doi: 10.1007/s11908-010-0129-9.
     Google Scholar
  67. Goel P., Jain V., Sengar M., Mohta A., Das P., Bansal P. Gastrointestinal mucormycosis: a success story and appraisal of concepts. J Infect Public Health. 2013; 6(1):58-61. doi: 10.1016/j.jiph.2012.08.004.
     Google Scholar
  68. Vediyappan G., Dumontet V., Pelissier F., d'Enfert C. Gymnemic acids inhibit hyphal growth and virulence in Candida albicans. PLoS One. 2013; 8(9):e74189. doi: 10.1371/journal.pone.0074189.
     Google Scholar
  69. Surapuram V., Setzer W., McFeeters R., McFeeters H. Antifungal activity of plant extracts against Aspergillus niger and Rhizopus stolonifer. Nat Prod Commun. 2014; 9(11):1603-5.
     Google Scholar
  70. Kim D., Quinn J., Pinsky B., Shah N., Brown I. Rates of Co-infection Between SARS-CoV-2 and Other Respiratory Pathogens. JAMA. 2020; 323(20):2085-2086. doi:10.1001/jama.2020.6266.
     Google Scholar
  71. Ma L., Wang W., Le Grange J., Wang X., Du S., Li C., et al. Coinfection of SARS-CoV-2 and other respiratory pathogens. Infect Drug Resist. 2020; 13:3045-3053. doi: 10.2147/IDR.S267238.
     Google Scholar
  72. Burrel S., Hausfater P., Dres M., Pourcher V., Luyt C., Teyssou E., et al. Co-infection of SARS-CoV-2 with other respiratory viruses and performance of lower respiratory tract samples for the diagnosis of COVID-19. Int J Infect Dis. 2021; 102:10-13. doi: 10.1016/j.ijid.2020.10.040.
     Google Scholar
  73. Chen N., Zhou M., Dong X., Qu J., Gong F., Han Y., et al. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study. Lancet. 2020; 395(10223):507-513. doi: 10.1016/S0140-6736(20)30211-7.
     Google Scholar
  74. Cataldo M., Tetaj N., Selleri M., Marchioni L., Capone A., Caraffa E., et al. Incidence of bacterial and fungal bloodstream infections in COVID-19 patients in intensive care: An alarming "collateral effect". J Glob Antimicrob Resist. 2020; 23:290-291. doi: 10.1016/j.jgar.2020.10.004.
     Google Scholar
  75. Moore S., Wilde A., Song M., Bohn B., Patross C., Denham B., et al. A patient with Escherichia coli bacteremia and covid-19 co-infection: A case report for the Louisville covid-19 epidemiology study," The University of Louisville Journal of Respiratory Infections. 2020; 1(4):15. DOI: 10.18297/jri/vol4/iss1/15.
     Google Scholar
  76. Arcari G., Raponi G., Sacco F., Bibbolino G., Di Lella F., Alessandri F., et al. Klebsiella pneumoniae infections in COVID-19 patients: a 2-month retrospective analysis in an Italian hospital. Int J Antimicrob Agents. 2021; 57(1):106245. doi: 10.1016/j.ijantimicag.2020.106245.
     Google Scholar
  77. Cheng L., Chau S., Tso E., Tsang S., Li I., Wong B., et al. Bacterial co-infections and antibiotic prescribing practice in adults with COVID-19: experience from a single hospital cluster. Ther Adv Infect Dis. 2020; 7:2049936120978095. doi: 10.1177/2049936120978095.
     Google Scholar
  78. Ramos-Martínez A., Fernández-Cruz A., Domínguez F., Forteza A., Cobo M., Sánchez-Romero I., et al. Hospital-acquired infective endocarditis during covid-19 pandemic. Infection Prevention in Practice. 2020; 2(3):100080. doi: 10.1016/j.infpip.2020.100080.
     Google Scholar
  79. Mahmoudi H. Bacterial co-infections and antibiotic resistance in patients with COVID-19. GMS Hyg Infect Control. 2020; 15:Doc35. doi: 10.3205/dgkh000370.
     Google Scholar
  80. Michael C., Dominey-Howes D., Labbate M. The antimicrobial resistance crisis: causes, consequences, and management. Front Public Health. 2014; 2:145. doi: 10.3389/fpubh.2014.00145.
     Google Scholar
  81. O’Neill J. Antimicrobial Resistance: Tackling a crisis for the health and wealth of nations. The Review on Antimicrobial Resistance, Wellcome Trust Dec. 2014.
     Google Scholar
  82. Lucien M., Canarie M., Kilgore P., Jean-Denis G., Fénélon N., Pierre M., et al. Antibiotics and antimicrobial resistance in the COVID-19 era: Perspective from resource-limited settings. Int J Infect Dis. 2021; 104:250-254. doi: 10.1016/j.ijid.2020.12.087.
     Google Scholar
  83. Perez S., Innes G., Walters M., Mehr J., Arias J., Greeley R., Chew D. Increase in hospital-acquired carbapenem-resistant Acinetobacter baumannii infection and colonization in an acute care hospital during a surge in Covid-19 admissions- New Jersey, Feb-July 2020. Morb Mortal Wkly Rep. 2020; 69(48):1827-1831. doi: 10.15585/mmwr.mm6948e1.
     Google Scholar
  84. Randall M., Minahan T., Mesisca M., Gnass S. Nosocomial methicillin-resistant Staphylococcus aureus bacteremia in incarcerated patients with severe COVID-19 infection. Am J Infect Control. 2020; 48(12):1568-1569. doi: 10.1016/j.ajic.2020.09.005.
     Google Scholar
  85. Gottesman T., Fedorowsky R., Yerushalmi R., Lellouche J., Nutman A. An outbreak of carbapenem-resistant Acinetobacter baumannii in a COVID-19 dedicated hospital. Infection Prevention in Practice. 2021; 3(1):100113. doi: 10.1016/j.infpip.2021.100113.
     Google Scholar
  86. Lu J., Guo J. Disinfection spreads antimicrobial resistance. Science. 2021; 371(6528):474. doi: 10.1126/science.abg4380.
     Google Scholar
  87. Mc Carlie S., Boucher C., Bragg R. Molecular basis of bacterial disinfectant resistance. Drug Resist Updat. 2020; 48:100672. doi: 10.1016/j.drup.2019.100672.
     Google Scholar
  88. Pittet D., Peters A., Tartari E. Enterococcus faecium tolerance to isopropanol: from good science to misinformation. Lancet Infect Dis. 2018; 18(10):1065-1066. doi: 10.1016/S1473-3099(18)30542-5.
     Google Scholar
  89. Mitsuboshi S., Tsugita M. Impact of alcohol-based hand sanitizers, antibiotic consumption, and other measures on detection rates of antibiotic-resistant bacteria in rural Japanese hospitals. J Infect Chemother. 2019; 25(3):225-228. doi: 10.1016/j.jiac.2018.08.013.
     Google Scholar
  90. Prasad A., Muthamilarasan M., Prasad M. Synergistic antiviral effects against SARS-CoV-2 by plant-based molecules. Plant Cell Rep. 2020; 39(9):1109-1114. doi: 10.1007/s00299-020-02560-w.
     Google Scholar
  91. Habermann E., Friedenthal R. Septic arthritis associated with avascular necrosis of the femoral head. Clin. Orthop. Relat. Res. 1978; 134:325-331.
     Google Scholar