Microbial Co-infections in Covid Patients: A Mini Review

##plugins.themes.bootstrap3.article.main##

  •   Rajkumar Bhosale

  •   Sasidharan Sakkan

  •   Sriram Padmanabhan

Abstract

In this review, we highlight the complications of COVID-19 affected patients due to microbial infections, which increase the severity of the disease. Nearly 50% of COVID-19 affected patients among non-survivors were either co-infected with bacterial, fungal, or viral pathogens. During ongoing COVID-19 pandemic, it has been a challenge for developing and under developing countries to identify co-infections in patients due to limited healthcare facilities and high cost for the diagnostic tests. Since several microbial co-infections are associated with COVID-19, there is need to diagnose such co-infections in early stage so that required control measures would be taken to avoid the further health risks. People with severe COVID-19, COVID-19 patients in intensive care units (ICU), are susceptible to bacterial and fungal infections. Bacterial pathogens, representing less than 14% of patients with reported infections include Mycoplasma pneumoniae, Haemophilus influenzae and Pseudomonas aeruginosa while fungal sps include Aspergillus, Candida auris, black fungus etc that invade the brain or cause patients to lose vision. The unregulated and inappropriate use of antibiotics, antimicrobial drugs and alcohol based hand sanitizers may enhance the evolution of AMR phenotypes among infectious pathogens.


Keywords: Bacteria, COVID-19, variants, mutants, EDTA, antibiotic resistance

References

Nalbandian A., Sehgal K., Gupta A., Madhavan M., McGroder C., Stevens J., et al. Post-acute COVID-19 syndrome. Nat Med. 2021; 27(4):601-615. doi: 10.1038/s41591-021-01283-z.

Tang X., Wu C., Li X., Song Y., Yao X., Wu X. On the origin and continuing evolution of SARS-CoV-2. Natl Sci Rev. 2020; nwaa036. doi: 10.1093/nsr/nwaa036.

Raj C., Kandaswamy D., Danduga R., Rajasabapathy R., James R., et al. COVID-19: molecular pathophysiology, genetic evolution and prospective therapeutics-a review. Arch Microbiol. 2021; 203(5):2043-2057 doi: 10.1007/s00203-021-02183-z.

Sogaard K., Baettig V., Osthoff M., Marsch S., Leuzinger K., Schweitzer M., et al. Community-acquired and hospital-acquired respiratory tract infection and bloodstream infection in patients hospitalized with COVID-19 pneumonia. J Intensive Care. 2021;18; 9 (1):10.doi: 10.1186/s40560-021-00526-y

Yadav P., Nyayanit D., Sahay R., Sarkale P., Pethani J., Patil S., et al. Isolation and characterization of the new SARS-CoV-2 variant in travellers from the United Kingdom to India: VUI-202012/01 of the B.1.1.7 lineage. J Travel Med. 2021; 28 (2):taab009. doi: 10.1093/jtm/taab009.

Galloway S., Paul P., MacCannell D., Johansson M., Brooks J., MacNeil A., et al. Emergence of SARS-CoV-2 B.1.1.7 Lineage - United States, December 29, 2020-January 12, 2021. MMWR Morb Mortal Wkly Rep. 2021; 70(3):95-99. doi: 10.15585/mmwr.mm7003e2.

Davies N., Abbott S., Barnard R., Jarvis C., Kucharski A., Munday J., et al. COVID-19 Working Group; COVID-19 Genomics UK (COG-UK) Consortium, Diaz-Ordaz K., Keogh R., Eggo R.M., Funk S., Jit M., Atkins K., Edmunds W. Estimated transmissibility and impact of SARS-CoV-2 lineage B.1.1.7 in England. Science 2021; 372(6538):eabg3055. doi: 10.1126/science.abg3055

Sallam M., Mahafzah A. Molecular Analysis of SARS-CoV-2 Genetic Lineages in Jordan: Tracking the Introduction and Spread of COVID-19 UK Variant of Concern at a Country Level. Pathogens. 2021; 10(3):302. doi: 10.3390/pathogens10030302.

Benvenuto D., Angeletti S., Giovanetti M., Bianchi M., Pascarella S., Cauda R., et al. Evolutionary analysis of SARS-CoV-2: how mutation of Non-Structural Protein 6 (NSP6) could affect viral autophagy. J Infect. 2020; 81(1):e24-e27. doi: 10.1016/j.jinf.2020.03.058.

Wibmer C.K., Ayres F., Hermanus T, Madzivhandila M., Kgagudi P., Oosthuysen B., et al. SARS-CoV-2 501Y.V2 escapes neutralization by South African COVID-1 McCallum 9 donor plasma. Nat Med, 2021; 27: 622–25. https://doi.org/10.1038/s41591-021-01285-x.

Adam D. The rush to study fast spreading coronavirus variants. Nature. 2021; 594 19-20. doi: 10.1038/d41586-021-01390-4.

Fillatre P., Dufour M.-J., Behillil S., Vatan R., Reusse P., Gabellec A., et al. A new SARS-CoV-2 variant poorly detected by RT-PCR on nasopharyngeal samples, with high lethality. medRxiv 2021;05.05.21256690; doi: 10.1101/2021.05.05.21256690.

McCallum M., Bassi J., Marco A.D., CHEN A., Walls A.C., Iulio J.D., Tortorici A., et al. SARS-CoV-2 immune evasion by variant B.1.427/B.1.429. bioRxiv. 2021; 437925. doi: 10.1101/2021.03.31.437925.

Zhou W., Wang W. Fast-spreading SARS-CoV-2 variants: challenges to and new design strategies of COVID-19 vaccines. Sig Transduct Target Ther. 2021; 6, 226. https://doi.org/10.1038/s41392-021-00644-x.

Francisco R. Jr, Benites L., Lamarca A., de Almeida L., Hansen A., Gularte J., et al. Pervasive transmission of E484K and emergence of VUI-NP13L with evidence of SARS-CoV-2 co-infection events by two different lineages in Rio Grande do Sul, Brazil. Virus Res. 2021; 296:198345. doi: 10.1016/j.virusres.2021.198345.

Sapkal G., Yadav P., Ella R., Abraham P., Patil D., Gupta N., et al. Neutralization of B.1.1.28 P2 variant with sera of natural SARS-CoV-2 infection and recipients of inactivated COVID-19 vaccine Covaxin. J Travel Med. 2021; taab077. doi: 10.1093/jtm/taab077.

Yadav P., Mohandas S., Sarkale P., Nyayanit D., Shete A., Sahay R., et al. Isolation of SARS-CoV-2 B.1.1.28.2 P2 variant and pathogenicity comparison with D614G variant in hamster model. bioRxiv [Preprint]. 2021. doi: 10.1101/2021.05.24.445424.

Tablizo F., Kim K.M., Lapid C.M., Castro M.J.R., Yangzon M.S.L., Maralit B.A., Ayes M.E.C., et al. Genome sequencing and analysis of an emergent SARS-CoV-2 variant characterized by multiple spike protein mutations detected from the Central Visayas Region of the Philippines. medRxiv 2021;03.03.21252812; doi: 10.1101/2021.03.03.21252812.

Vareille M., Kieninger E., Edwards M., Regamey N. The airway epithelium: soldier in the fight against respiratory viruses. Clin Microbiol Rev. 2011; 24(1):210-29. doi: 10.1128/CMR.00014-10.

Mirzaei R. Goodarzi P., Asadi M., Soltani A., Aljanabi H., Jeda A., et al. Bacterial co-infections with SARS-CoV-2. IUBMB Life. 2020; 72(10):2097-2111. doi: 10.1002/iub.2356

Denney L, Ho L. The role of respiratory epithelium in host defence against influenza virus infection. Biomed J. 2018; 41(4):218-233. doi: 10.1016/j.bj.2018.08.004.

Calcagno A., Ghisetti V., Burdino E., Trunfio M., Allice T., Boglione L., et al. Co-infection with other respiratory pathogens in COVID-19 patients. Clin Microbiol Infect. 2021; 27(2):297-298. doi: 10.1016/j.cmi.2020.08.012.

Sarkar S., Khanna P., Singh A. Impact of COVID-19 in patients with concurrent co-infections: A systematic review and meta-analyses. J Med Virol. 2021a; 93(4):2385-2395. doi: 10.1002/jmv.26740.

Lansbury L., Lim B., Baskaran V., Lim W. Co-infections in people with COVID-19: a systematic review and meta-analysis. J Infect. 2020; 81(2):266-275. doi: 10.1016/j.jinf.2020.05.046.

Agrawal A., Murphy T. Haemophilus influenzae infections in the H. influenzae type b conjugate vaccine era. J Clin Microbiol. 2011; 49(11):3728-3732. doi: 10.1128/JCM.05476-11.

Cusumano J., Dupper A., Malik Y., Gavioli E., Banga J., Caban A.B., et al. Staphylococcus aureus bacteremia in patients infected with COVID-19: A case series. Open Forum Infect Dis. 2020; 7(11):ofaa518. doi: 10.1093/ofid/ofaa518.

Duployez C., Le Guern R., Tinez C., Lejeune A.L., Robriquet L., Six S., et al. Panton-valentine leukocidin-secreting Staphylococcus aureus pneumonia complic Wibmer ating COVID-19. Emerg Infect Dis. 2020; 26(8):1939-1941. doi: 10.3201/eid2608.201413.

Dudoignon E., Caméléna F., Deniau B., Habay A., Coutrot M., Ressaire Q., et al. Bacterial Pneumonia in COVID-19 Critically Ill Patients: A Case Series. Clin Infect Dis. 2021; 72(5):905-906. doi: 10.1093/cid/ciaa762.

Henriques-Normark B., Tuomanen E. The Pneumococcus: epidemiology, microbiology, and pathogenesis. Cold Spring Harb Perspect Med. 2013; 3(7):a010215. doi: 10.1101/cshperspect.a010215.

Anton-Vazquez V., Clivillé R. Streptococcus pneumoniae co-infection in hospitalized patients with COVID-19. Eur J Clin Microbiol Infect Dis. 2021;19:1-3. doi: 10.1007/s10096-021-04166-w.

Rodriguez-Nava G., Yanez-Bello M., Trelles-Garcia D., Chung C., Egoryan G., Friedman H.J. A retrospective study of co-infection of SARS-CoV-2 and Streptococcus pneumoniae in 11 hospitalized patients with severe covid-19 pneumonia at a single center. Med Sci Monit. 2020; 26:e928754. doi: 10.12659/MSM.928754.

Cucchiari D., Pericàs J., Riera J., Gumucio R., Md E., Nicolás D. Pneumococcal superinfection in COVID-19 patients: A series of 5 cases. Med Clin (Engl Ed). 2020; 155(11):502-505. doi: 10.1016/j.medcle.2020.05.028.

Cunningham M. Pathogenesis of group A streptococcal infections. Clin Microbiol Rev. 2000; 13(3):470-511. doi: 10.1128/cmr.13.3.470-511.2000.

Kanwal S., Vaitla P. Streptococcus Pyogenes. 2020 Aug 10. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2021.

Khaddour K., Sikora A., Tahir N., Nepomuceno D., Huang T. Case Report: The importance of novel coronavirus disease (Covid-19) and co-infection with other respiratory pathogens in the current pandemic. Am J Trop Med Hyg. 2020; 102(6):1208-1209. doi: 10.4269/ajtmh.20-0266.

Asif M., Alvi I., Rehman S. Insight into Acinetobacter baumannii: pathogenesis, global resistance, mechanisms of resistance, treatment options, and alternative modalities. Infect Drug Resist. 2018; 21(11):1249-1260. doi: 10.2147/IDR.S166750.

Durán-Manuel E., Cruz-Cruz C., Ibáñez-Cervantes G., Bravata-Alcantará J., Sosa-Hernández O., Delgado-Balbuena L., et al. Clonal dispersion of Acinetobacter baumannii in an intensive care unit designed to patients COVID-19. J Infect Dev Ctries. 2021; 15(1):58-68. doi: 10.3855/jidc.13545.

Sharifipour E., Shams S., Esmkhani M., Khodadadi J., Fotouhi-Ardakani R., Koohpaei A., et al. Evaluation of bacterial co-infections of the respiratory tract in Covid-19 patients admitted to ICU. BMC Infect Dis. 2020; 20(1):646. doi: 10.1186/s12879-020-05374-z.

Dissanayake T.K., Yan B., Ng A. C.-K., Zhao H., Chan G., Yip C.C.Y., et al. Differential role of sphingomyelin in influenza virus, rhinovirus and SARS-CoV-2 infection of Calu-3 cells. J Gen Virol. 2021;102:001593.DOI 10.1099/jgv.0.001593

Aizaki H., Morikawa K., Fukasawa M., Hara H., Inoue Y., Tani H., et al. Critical role of virion-associated cholesterol and sphingolipid in hepatitis C virus infection. J Virol. 2008; 82(12):5715-24. doi: 10.1128/JVI.02530-07.

Miller M., Adhikary S., Kolokoltsov A., Davey R. Ebolavirus requires acid sphingomyelinase activity and plasma membrane sphingomyelin for infection. J Virol. 2012; 86:7473–7483.

Otsuki N., Sakata M., Saito K., Okamoto K., Mori Y., Hanada K., et al. Both sphingomyelin and cholesterol in the host cell membrane are essential for Rubella virus entry. J Virol. 2017; 92(1):e01130-17. doi: 10.1128/JVI.01130-17.

Pastenkos G., Miller L., Pritchard M., Nicola V. Role of sphingomyelin in Alpha herpesvirus entry. J Virol. 2019; 93(5):e01547-18. doi: 10.1128/JVI.01547-18.

Shen B., Yi X., Sun Y., Bi X., Du J., Zhang C., et al. et al., Proteomic and metabolomic characterization of covid-19 Patient Sera. Cell. 2020: 182:59–72. DOI: https://doi.org/10.1016/j.cell.2020.05.032.

Carpinteiro A., Gripp B., Hoffmann M., Pöhlmann S., Hoertel N., Edwards M.J., et al. Inhibition of acid sphingomyelinase by ambroxol prevents SARS-CoV-2 entry into epithelial cells. J Biol Chem. 2021; 296:100701. doi: 10.1016/j.jbc.2021.100701.

Pemán J., Ruiz-Gaitán A., García-Vidal C., Salavert M., Ramírez P., Puchades F., et al. Fungal co-infection in covid-19 patients: Should we be concerned? Rev Iberoam Micol. 2020; 37(2):41-46. doi: 10.1016/j.riam.2020.07.001.

Marshall J., Murthy S., Diaz J. WHO Working Group on the Clinical Characterization and management of Covid-19 infection. Fungal infections should be part of the core outcome set for COVID-19 - Authors' reply. Lancet Infect Dis. 2020; S1473-3099(20)30681-2. doi: 10.1016/S1473-3099(20)30681-2.

Song G., Liang G., Liu W. Fungal co-infections associated with global COVID-19 pandemic: A clinical and diagnostic perspective from China. Mycopathologia. 2020; 185(4):599-606. doi: 10.1007/s11046-020-00462-9.

Garcia-Vidal C., Sanjuan G., Moreno-García E., Puerta-Alcalde P., Garcia-Pouton N., Chumbita M., et al. Incidence of co-infections and superinfections in hospitalized patients with COVID-19: a retrospective cohort study. Clin Microbiol Infect. 2021; 27(1):83-88. doi: 10.1016/j.cmi.2020.07.041.

Chen X., Liao B., Cheng L., Peng X., Xu X., Li Y., et al. The microbial coinfection in COVID-19. Appl Microbiol Biotechnol. 2020; 104(18):7777-7785. doi:10.1007/s00253-020-10814-6

Lai C., Yu W. COVID-19 associated with pulmonary aspergillosis: A literature review. J Microbiol Immunol Infect. 2021; 54(1):46-53. doi: 10.1016/j.jmii.2020.09.004.

Koehler P., Bassetti M., Chakrabarti A., Chen S.C.A., Colombo A.L., Hoenigl M., et al. Defining and managing COVID-19-associated pulmonary aspergillosis: the 2020 ECMM/ISHAM consensus criteria for research and clinical guidance. Lancet Infect Dis. 2021; 21(6):e149-e162. doi: 10.1016/S1473-3099(20)30847-1.

van Arkel A., Rijpstra T., Belderbos H., van Wijngaarden P., Verweij P., Bentvelsen R. COVID-19-associated Pulmonary Aspergillosis. Am J Respir Crit Care Med. 2020; 202(1):132-135. doi: 10.1164/rccm.202004-1038LE.

Sharma A., Hofmeyr A., Bansal A., Thakkar D., Lam L., Harrington Z., et al. COVID-19 associated pulmonary aspergillosis (CAPA): An Australian case report. Med Mycol Case Rep. 2021; 31:6-10. doi: 10.1016/j.mmcr.2020.06.002.

Imoto W., Himura H., Matsuo K., Kawata S., Kiritoshi A., Deguchi R., et al. COVID-19-associated pulmonary aspergillosis in a Japanese man: A case report. J Infect Chemother. 2021; 27(6):911-914. doi: 10.1016/j.jiac.2021.02.026.

Benedetti M., Alava K., Sagardia J., Cadena R., Laplume D., Capece P., et al. COVID-19 associated pulmonary aspergillosis in ICU patients: Report of five cases from Argentina. Med Mycol Case Rep. 2021; 31:24-28. doi: 10.1016/j.mmcr.2020.11.003.

Prakash H., Chakrabarti A. Global epidemiology of mucormycosis. J Fungi (Basel). 2019; 5(1):26. doi: 10.3390/jof5010026.

Hunt E. Recognizing mucormycosis in an immunocompromised patient. JAAPA. 2020; 33(12):23-25. doi: 10.1097/01.JAA.0000721656.13462.67.

Mehta S., Pandey A. Rhino-Orbital Mucormycosis Associated With COVID-19. Cureus. 2020; 12(9):e10726. doi: 10.7759/cureus.10726.

Sen M., Lahane S., Lahane T., Parekh R., Honavar S. Mucor in a Viral Land: A Tale of Two Pathogens. Indian J Ophthalmol. 2021 F; 69(2):244-252. doi: 10.4103/ijo.IJO_3774_20.

Mekonnen Z., Ashraf D., Jankowski T., Grob S., Vagefi M., Kersten R., et al. Acute invasive rhino-orbital mucormycosis in a patient with COVID-19-associated acute respiratory distress syndrome. Ophthalmic Plast Reconstr Surg. 2021; 37(2):e40-e80. doi: 10.1097/IOP.0000000000001889.

Revannavar S., Supriya P., Samaga L., Vineeth K. COVID-19 triggering mucormycosis in a susceptible patient: a new phenomenon in the developing world? BMJ Case Rep. 2021; 14(4):e241663. doi: 10.1136/bcr-2021-241663.

Raut A., Huy N.T. Rising incidence of mucormycosis in patients with COVID-19: another challenge for India amidst the second wave? Lancet Respir Med. 2021; S2213-2600(21)00265-4. doi: 10.1016/S2213-2600(21)00265-4. Epub ahead of print.

Singh A., Singh R., Joshi S., Misra A. Mucormycosis in COVID-19: A systematic review of cases reported worldwide and in India. Diabetes Metab Syndr. 2021; 15(4):102146. doi: 10.1016/j.dsx.2021.05.019.

Sarkar S., Gokhale T., Choudhury S.S., Deb A.K. COVID-19 and orbital mucormycosis. Indian J Ophthalmol. 2021b; 69(4):1002-1004. doi: 10.4103/ijo.IJO_3763_20.

Spellberg B., Ibrahim A. Recent advances in the treatment of mucormycosis. Curr Infect Dis Rep. 2010; 12(6):423-9. doi: 10.1007/s11908-010-0129-9.

Goel P., Jain V., Sengar M., Mohta A., Das P., Bansal P. Gastrointestinal mucormycosis: a success story and appraisal of concepts. J Infect Public Health. 2013; 6(1):58-61. doi: 10.1016/j.jiph.2012.08.004.

Vediyappan G., Dumontet V., Pelissier F., d'Enfert C. Gymnemic acids inhibit hyphal growth and virulence in Candida albicans. PLoS One. 2013; 8(9):e74189. doi: 10.1371/journal.pone.0074189.

Surapuram V., Setzer W., McFeeters R., McFeeters H. Antifungal activity of plant extracts against Aspergillus niger and Rhizopus stolonifer. Nat Prod Commun. 2014; 9(11):1603-5.

Kim D., Quinn J., Pinsky B., Shah N., Brown I. Rates of Co-infection Between SARS-CoV-2 and Other Respiratory Pathogens. JAMA. 2020; 323(20):2085-2086. doi:10.1001/jama.2020.6266.

Ma L., Wang W., Le Grange J., Wang X., Du S., Li C., et al. Coinfection of SARS-CoV-2 and other respiratory pathogens. Infect Drug Resist. 2020; 13:3045-3053. doi: 10.2147/IDR.S267238.

Burrel S., Hausfater P., Dres M., Pourcher V., Luyt C., Teyssou E., et al. Co-infection of SARS-CoV-2 with other respiratory viruses and performance of lower respiratory tract samples for the diagnosis of COVID-19. Int J Infect Dis. 2021; 102:10-13. doi: 10.1016/j.ijid.2020.10.040.

Chen N., Zhou M., Dong X., Qu J., Gong F., Han Y., et al. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study. Lancet. 2020; 395(10223):507-513. doi: 10.1016/S0140-6736(20)30211-7.

Cataldo M., Tetaj N., Selleri M., Marchioni L., Capone A., Caraffa E., et al. Incidence of bacterial and fungal bloodstream infections in COVID-19 patients in intensive care: An alarming "collateral effect". J Glob Antimicrob Resist. 2020; 23:290-291. doi: 10.1016/j.jgar.2020.10.004.

Moore S., Wilde A., Song M., Bohn B., Patross C., Denham B., et al. A patient with Escherichia coli bacteremia and covid-19 co-infection: A case report for the Louisville covid-19 epidemiology study," The University of Louisville Journal of Respiratory Infections. 2020; 1(4):15. DOI: 10.18297/jri/vol4/iss1/15.

Arcari G., Raponi G., Sacco F., Bibbolino G., Di Lella F., Alessandri F., et al. Klebsiella pneumoniae infections in COVID-19 patients: a 2-month retrospective analysis in an Italian hospital. Int J Antimicrob Agents. 2021; 57(1):106245. doi: 10.1016/j.ijantimicag.2020.106245.

Cheng L., Chau S., Tso E., Tsang S., Li I., Wong B., et al. Bacterial co-infections and antibiotic prescribing practice in adults with COVID-19: experience from a single hospital cluster. Ther Adv Infect Dis. 2020; 7:2049936120978095. doi: 10.1177/2049936120978095.

Ramos-Martínez A., Fernández-Cruz A., Domínguez F., Forteza A., Cobo M., Sánchez-Romero I., et al. Hospital-acquired infective endocarditis during covid-19 pandemic. Infection Prevention in Practice. 2020; 2(3):100080. doi: 10.1016/j.infpip.2020.100080.

Mahmoudi H. Bacterial co-infections and antibiotic resistance in patients with COVID-19. GMS Hyg Infect Control. 2020; 15:Doc35. doi: 10.3205/dgkh000370.

Michael C., Dominey-Howes D., Labbate M. The antimicrobial resistance crisis: causes, consequences, and management. Front Public Health. 2014; 2:145. doi: 10.3389/fpubh.2014.00145.

O’Neill J. Antimicrobial Resistance: Tackling a crisis for the health and wealth of nations. The Review on Antimicrobial Resistance, Wellcome Trust Dec. 2014.

Lucien M., Canarie M., Kilgore P., Jean-Denis G., Fénélon N., Pierre M., et al. Antibiotics and antimicrobial resistance in the COVID-19 era: Perspective from resource-limited settings. Int J Infect Dis. 2021; 104:250-254. doi: 10.1016/j.ijid.2020.12.087.

Perez S., Innes G., Walters M., Mehr J., Arias J., Greeley R., Chew D. Increase in hospital-acquired carbapenem-resistant Acinetobacter baumannii infection and colonization in an acute care hospital during a surge in Covid-19 admissions- New Jersey, Feb-July 2020. Morb Mortal Wkly Rep. 2020; 69(48):1827-1831. doi: 10.15585/mmwr.mm6948e1.

Randall M., Minahan T., Mesisca M., Gnass S. Nosocomial methicillin-resistant Staphylococcus aureus bacteremia in incarcerated patients with severe COVID-19 infection. Am J Infect Control. 2020; 48(12):1568-1569. doi: 10.1016/j.ajic.2020.09.005.

Gottesman T., Fedorowsky R., Yerushalmi R., Lellouche J., Nutman A. An outbreak of carbapenem-resistant Acinetobacter baumannii in a COVID-19 dedicated hospital. Infection Prevention in Practice. 2021; 3(1):100113. doi: 10.1016/j.infpip.2021.100113.

Lu J., Guo J. Disinfection spreads antimicrobial resistance. Science. 2021; 371(6528):474. doi: 10.1126/science.abg4380.

Mc Carlie S., Boucher C., Bragg R. Molecular basis of bacterial disinfectant resistance. Drug Resist Updat. 2020; 48:100672. doi: 10.1016/j.drup.2019.100672.

Pittet D., Peters A., Tartari E. Enterococcus faecium tolerance to isopropanol: from good science to misinformation. Lancet Infect Dis. 2018; 18(10):1065-1066. doi: 10.1016/S1473-3099(18)30542-5.

Mitsuboshi S., Tsugita M. Impact of alcohol-based hand sanitizers, antibiotic consumption, and other measures on detection rates of antibiotic-resistant bacteria in rural Japanese hospitals. J Infect Chemother. 2019; 25(3):225-228. doi: 10.1016/j.jiac.2018.08.013.

Prasad A., Muthamilarasan M., Prasad M. Synergistic antiviral effects against SARS-CoV-2 by plant-based molecules. Plant Cell Rep. 2020; 39(9):1109-1114. doi: 10.1007/s00299-020-02560-w.

Habermann E., Friedenthal R. Septic arthritis associated with avascular necrosis of the femoral head. Clin. Orthop. Relat. Res. 1978; 134:325-331.

##plugins.themes.bootstrap3.article.details##

How to Cite
Bhosale, R., Sakkan, S., & Padmanabhan, S. (2021). Microbial Co-infections in Covid Patients: A Mini Review. European Journal of Biology and Biotechnology, 2(5), 1-10. https://doi.org/10.24018/ejbio.2021.2.5.275