Bangabandhu Sheikh Mujibur Rahman Agricultural University, Bangladesh
* Corresponding author
Bangabandhu Sheikh Mujibur Rahman Agricultural University, Bangladesh
Bangabandhu Sheikh Mujibur Rahman Agricultural University, Bangladesh
Bangabandhu Sheikh Mujibur Rahman Agricultural University, Bangladesh
Bangabandhu Sheikh Mujibur Rahman Agricultural University, Bangladesh

Article Main Content

In vitro regeneration of cucumber is relatively difficult for genetic improvement. In this regard, different concentrations of growth regulators and three types of explants (cotyledon, hypocotyl and leaf disc) were investigated for their efficiency on callus induction potential. Among different explants explored for callus induction with different concentrations of 2,4-dichlorophenoxyacetic acid (2,4-D), leaf disc responded earlier (4.67 days) and showed higher percentage of callus induction (91.50%) with 2 mg/l 2,4-D supplemented Murashige and Skoog (MS) media. The same concentration of 2,4-D resulted in the maximum callus fresh (0.56 g) and dry weight (0.39 g) from leaf disc explant. Then the callus was transferred to untreated, 2.0 mg/l BAP + 0.2 mg/l NAA + 1.0 mg/l Kn, 2.0 mg/l BAP + 1.0 mg/l NAA + 1.0 mg/l Kn and 2.0 mg/l BAP + 1.5 mg/l NAA + 1.0 mg/l Kn fortified MS medium. After transferring the callus of different explants to shoot regeneration media containing different concentrations of 6-benzylaminopurine (BAP), 1-naphthaleneacetic acid (NAA) and Kinetin (Kn), only cotyledon callus started to regenerate shoot. The combination of BAP (2 mg/l) + NAA (0.2 mg/l) + Kn (1 mg/l) showed highest shoot regeneration percentage (67.77%) and the maximum number of shoots (5.12) per explant were recorded in the treatment combination of 2 mg/l BAP + 0.2 mg/l NAA + 1 mg/l Kn. These results provided a basis for the optimization of the callus induction protocol of cucumber for genetic transformation.

References

  1. I. I. Lashin, and D. Mamdouh, “Effect of plant growth regulators on callus induction and plant regeneration of cucumber (Cucumis sativus L. Beith Alpha)”, Nature Sci., 12(11), pp. 68-74, 2014.
     Google Scholar
  2. P. K. Mukherjee, N. K. Nema, N. Maity, and B. K. Sarkar, “Phytochemical and therapeutic potential of cucumber”, Fitoterapia, 84, pp. 227-236, 2013.
     Google Scholar
  3. L. Aziza, A. H. Fardous, Y. Farjana, and R. H. Hasibur, “Production and marketing of cucumber in some selected areas of Mymensingh district”, Agric. Res. Technol., 15(5), pp. 141-148, 2018.
     Google Scholar
  4. Z. Khan, A. H. Shah, R. Gul, A. Majid, and U. Khan, “Morpho-agronomic characterization of cucumber germplasm for yield and yield associated traits”, Int. J. Agron. Agr. Res., 6, pp. 1-6, 2015.
     Google Scholar
  5. V. Gaba, A. Zelcer, and A. Gal-on, “Cucurbit biotechnology- the importance of virus resistance”, In Vitro Cell Dev. Biol. -Plant, 40, pp. 346-358, 2004.
     Google Scholar
  6. V. P. Sobhakumari, and S. D. Mathew, “Effect of hybrid vigor on callus induction and regeneration of sugarcane”, Cytologia, 74(1), pp. 71–77, 2009.
     Google Scholar
  7. N. Carsono, and T. Yoshida, “Identification of callus induction potential of 15 Indonesian rice genotypes”, Plant Prod. Sci., 9(1), pp. 65-70, 2006.
     Google Scholar
  8. M. Hesami, and M.H. Daneshvar, “In Vitro adventitious shoot regeneration through direct and indirect organogenesis from seedling-derived hypocotyl segments of Ficus religiosa L.: An important medicinal plant”, Hort. Sci., 53(1), pp. 55–61, 2018.
     Google Scholar
  9. T. D. Thomas, and K. R. Sreejesh, “Callus induction and plant regeneration from cotyledonary explants of ash gourd (Benincasa hispida L.)”, Sci. Hort., 100(1), pp. 359-367, 2004.
     Google Scholar
  10. J. R. Deakin, G. W. Bohn, and T. W. Whitaker, “Interspecific hybridization in Cucumis”, Econ. Bot., 25(2), pp. 195-211, 1971.
     Google Scholar
  11. J. Konstas, and S. Kintzios, “Developing a scale-up system for the micropropagation of cucumber (Cucumis sativus L.): The effect of growth retardants, liquid culture and vessel size”, Plant Cell Reprod., 21(6), pp. 538-548, 2003.
     Google Scholar
  12. A. Ahmad, and M. Anis, “In vitro mass propagation of Cucumis sativus L. from nodal segments”, Turk. J. Bot., 29, pp. 237-240, 2005.
     Google Scholar
  13. A. Vasudevan, N. Selvaraj, A. Ganapathi, S. Kasthurirengan, V. R. Anbazhagan, and M. Manickavasagam, “Glutamine: A suitable nitrogen source for enhanced shoot multiplication in Cucumis sativus L.”, Biol. Plant, 48, pp. 125-128, 2004.
     Google Scholar
  14. H. A. Kumar, H. N. Murthy, and K. Y. Paek, “Embryogenesis and plant regeneration from anther cultures of Cucumis sativus L.”, Sci. Hort., 98(3), pp. 213-222, 2003.
     Google Scholar
  15. C. Zhu, and Z. Chen, “Role of polyamines in adventitious shoot morphogenesis from cotyledons of cucumber in vitro”, Plant Cell Tis. Org. Cult., 81, pp. 45-53, 2005.
     Google Scholar
  16. N. Selvaraj, A. Vasudevan, M. Manickavasagam, and A. Ganapathi, “In vitro organogenesis and plant formation in cucumber”, Biol. Plantarum, 50(1), pp. 123-126, 2006.
     Google Scholar
  17. W. Burza, and S. Malepszy, “Direct plant regeneration from leaf explants in cucumber (Cucumis sativus L.) is free of stable genetic variation”, Plant Breed., 114, pp. 341-345, 1995a.
     Google Scholar
  18. Z. K.Punja, N. Abbas, G. G. Sarmento, and F. A. Tang, “Regeneration of Cucumis sativus var. sativus and C. sativus var. hardwickii, C. melo, and C. metuliferus from explants through somatic embryogenesis and organogenesis”, Plant Cell Tis. Org. Cult., 21(2), pp. 93-102, 1990.
     Google Scholar
  19. W. BURZA, and S. MALEPSZY, “In vitro culture of Cucumis sativus L. XVIII. Plants from Protoplasts through direct somatic embryogenesis”, Plant Cell Tis. Org. Cult., 41, pp. 259–266, 1995b.
     Google Scholar
  20. M. Ladyzynski, W. Burza, and S. Malepszy, “Relationship between somaclonal variation and type of culture in cucumber”, Euphytica., 125, pp. 349–356, 2002.
     Google Scholar
  21. M. Filipecki, A. Wisniewska, Z. Yin, and S. Malepszy, “The heritable changes in metabolic profiles of plants regenerated in different types of in vitro culture”, Plant Cell Tis. Org. Cult., 82, pp. 349–356, 2005.
     Google Scholar
  22. T. C. Wehner, and R. D. Locy, “In vitro adventitious shoot and root formation of cultivars and lines of Cucumis sativus L.”, Hort. Sci. 16, pp. 759-760, 1981a.
     Google Scholar
  23. S. G. Kim, J. R. Chang, H. C. Cha, and K. W. Lee, “Callus growth and plant regeneration in diverse cultivars of cucumber (Cucumis sativus L.)”, Plant Cell Tis. Org. Cult., 12, pp. 67-74, 1988.
     Google Scholar
  24. S. Abu-Romman, M. Suwwan, and E. Al Ramamneh, “The influence of plant growth regulators on callus induction from hypocotyls of cucumber (Cucumis sativus L.)”, Adv. Environ. Biol., 7(2), pp. 339–343, 2013.
     Google Scholar
  25. T. Murashige, and T. Skoog, “A revised medium for rapid growth and bioassays with tobacco tissue cultures”, Physiol. Plantarum, 15, pp. 473–497, 1962.
     Google Scholar
  26. M. Usman, Z. Hussain, and B. Fatima, “Somatic embryogenesis and shoot regeneration induced in cucumber leaves”, Pakistan J. Bot., 43(2), pp. 1283-1293, 2011.
     Google Scholar
  27. S. P. Pal, I. Alam, M. Anisuzzaman, K. K. Sarker, S. A. Sharmin, and M. F. Alam, “Indirect organogenesis in summer squash (Cucurbita pepo L.)”, Turk. J. Agric. Forestry, 31(1), pp. 63-70, 2007.
     Google Scholar
  28. B. Tuncer, “Callus proliferation and shoot regeneration from different explant types in ornamental gourd (Cucurbita pepo var. ovifera)”, Yüzüncü Yıl Üniversitesi Tarım Bilimleri Dergisi, 23(2), pp. 164-171, 2013.
     Google Scholar
  29. N. K. Devendra, B. Subhash, and Y. N. Seetharam, “Callus growth and plant regeneration in Momordica dioica (Roxb.) wild cucurbitaceae”, Am.-Eurasian J. Sustain. Agric, 3(4), pp. 743-748, 2009.
     Google Scholar
  30. T. C. Wehner, and R. D. Locy, “Tissue culture propagation of field grown cucumber selections”, Cucurbit Genet. Cooperative Rep., 4, pp. 20-22, 1981b.
     Google Scholar
  31. C. Rakhi, H. R. Rekha, and M. V. Kumar, “Assessment of regenerative potentiality of cotyledon explants of some indigenous varieties of cucurbits using varied concentrations of cytokinins”, Sixth Int. Plant Tis. Cult. Biotechnol. Conference Proc, pp. 27-40, 2010.
     Google Scholar
  32. N. Selvaraj, A. Vasudevan, M. Manickavasagam, S. Kasthurirengan, and A. Ganapathi, “High frequency shoot regeneration from cotyledon explants of cucumber via organogenesis”, Sci. Hort., 112(1), pp. 2-8, 2007.
     Google Scholar
  33. M. Rasheed, M. J. jaskani, M. Rasheed, M. S. Iqbal, S. Zia-Ul-Hasan, R. Rafique, and M. Iqbal, “Regeneration of plantlets from various explants of tetraploid watermelon”, J. Biol. Agric. Health, 3(1), pp. 22-29, 2013.
     Google Scholar
  34. M. M. Khatun, M. S. Hossain, M. Khalekuzzaman, A. Rownaq, and M. Rahman, “In vitro plant regeneration from cotyledon and internodes derived callus in watermelon (Citrulus lanatus Thumb.)”, Int. J. Sustain. Crop Prod, 5(4), pp. 25-29, 2010.
     Google Scholar