##plugins.themes.bootstrap3.article.main##

During seminal freezing, sperm undergo oxidative stress, reducing their motility, viability, and acrosomal integrity. To prevent these damages, antioxidants have been added at the time of seminal freezing. The objective was to assess the antioxidant effect of the combination of α-tocopherol with quercetin, added to the diluent for the freezing of boar semen. The semen of boars of the Pietrain and York/Pietrain breeds was frozen in 0.5 ml straws, before freezing α-tocopherol in a concentration of 4 mg/ml (T1), quercetin in concentrations of 25, 50 and 100 µM (T2, T3 and T4), α-tocopherol + Quercetin in concentrations of 4 mg/ml + 25 µM, 4 mg/ml+50 µM and 4 mg/ml + 100 µM (T5, T6 and T7) and the control group (T8) without antioxidant. The straws were frozen in liquid nitrogen for 7 days and thawed at 42 °C for 12 seconds. 5 repetitions were performed analyzing motility, viability, and NAR. the results were analyzed using a completely randomized design in factorial arrangement comparing the means with a Tukey test. The best percentage of motility was for T5, T4 and T1 with 39.44, 38.06 and 37.33%, respectively, there was a significant difference with T8; the best percentage of viability were T5 with 51.41%, there was a significant difference with T3 and T8; and the best NAR percentages were for T8 with 94.90%, with a significant difference for T1. In conclusion, the addition of α-tocopherol and quercetin separately or in combination protects the motility, viability, and NAR of spermatozoa from frozen-thawed boar semen.

References

  1. Caldevilla M, Ferrante A, Pendola C, Miragaya M. (2016) Comparación del efecto de dos curvas de congelación de semen porcino. Resultados preliminaries. Spermova, 2(6), 112-118. Spanish.
     Google Scholar
  2. Olivo Zepeda IB, Conejo Nava J, Flores Padilla JP, Núñez Anita RE, García Luna F, Val Arreola D, et al. (2017). Evaluación de dos protocolos de refrigeración previos a la congelación del semen de porcino, Actas Iberoamericanas en Conservación Animal, 195-200. Spanish.
     Google Scholar
  3. Williams S, Fernández V, Gavazza M, Marmunti M, Zeinsteger P, Prenna G. (2015) Congelación se semen porcino: resultados y avances en la técnica. Analecta Vet, 3(1), 17-25. Spanish.
     Google Scholar
  4. Yan Z, Dinghui D, Yu C, Yuan L, Ming Z, Guangbin Z, et al. (2017). Criopreservation of boar sperm induces differential microRNAs expression. Cryobiology.
     Google Scholar
  5. Johonson LA, Weitze KF, Fiser P, Maxwell WM. (2000). Storage of boar semen. Anim Reprod Sci, 62(1-3), 143-72.
     Google Scholar
  6. Marcial Cumpa G, Joel Pomahuali. (2009). Evaluación comparativa del ácido ascórbico y del tocoferol sobre la fertilidad del semen de gallo. Anales científicos UNALM, 70, 27-33. Spanish.
     Google Scholar
  7. Flores Solano C, Meléndez C, Carmona G, Márquez Y, Mendoza C, Villanova L. (2017). Actividad de la superóxido dismutasa cu/zn en plasma seminal e integridad de la membrana plasmática en semen de cerdo (Sus scrofa doméstica) conservado con melatonina. Gaceta de Ciencias Veterinaria, 22(29, 37-42.
     Google Scholar
  8. Tae Hee K, In Suh Y, In Chul P, Hee Tae C, Jong Taek K, Choon Keun P, et al. (2014). Effects of quercertin and genistein on boar sperm characteristics and porcine IVF embyo developments. Journal of Embryo Transfer, 141-8.
     Google Scholar
  9. Seifi Jamadi A, Kohram H, Zare Shahneh A, Ansari M, Macías Garcias B. (2016). Quercetin Ameliorate Motility in Frozen-Thawed Turkmen Stallions Sperm. Journal of Equine Veterinary Science, 45, 73-77.
     Google Scholar
  10. Pérez Aguirre burualde MS, Fernández S, Córdoba M. (2012). Acrosin activity regulation by protein kinase C and tyrosine kinase in bovine sperm acrosome exocytosis induced by Lysophosphatidylcholine. Reproduction in Domestic Animals, 47(6), 915-920.
     Google Scholar
  11. Silva CB, Cajueiro FP, Silva PC, Soares PC, Guerra MP. (2012). Effect of antioxidants resveratrol and quercetin on in vitro evaluation of frozen ram sperm. Theriogenology, 77(8), 1722-6.
     Google Scholar
  12. Gibb Z, Mayordomo TJ, Morris LH, Maxwell WM, Grupen CG. (2013). Quercetin improves the postthaw characteristics of cryopreserved sex-sorted and nonsorted stallion sperm. Therigenology, 79(6), 1001-1009.
     Google Scholar
  13. Silva CB, Arruda CP, Silva SV, Souza HM, Guerra MP. (2016). High resveratrol or quercetin concentrations reduce the oscillation index of frozen goat semen. Arq. Bras. Med. Vet. Zootec, 68(5).
     Google Scholar
  14. Tvrdá E, Tusimova E, Kovácik A, Páal D, Libova L, Lukac. (2016). Protective effects of quercetin on selected oxidative biomarkers in bovine spermatozoa subjected to ferrous ascorbate. Reprod Domest Anim, 51(4), 524-537.
     Google Scholar
  15. Afshin Seifi J, Ejaz A, Mahdi A, Hamid K. (2017). Antioxidant effect of quercetin in an extender containing DMA or glicerol on freezing capacity of goat semen. Crybiology, 75, 15-20.
     Google Scholar
  16. Avdatek F, Yeni D, Inanc ME, Cil B, Tuncer BP, Türkmen R, et al. (2017). Supplementation of quercetin for advanced DNA integrity in bull semen criopreservation. Andrologia.
     Google Scholar
  17. Chae MR, Kang SJ, Lee KP, Choi BR, Kim HK, Park JK, et al. (2017). Onion (Allium cepa L.) peel extract (OPE) regulates human sperm motility via protein kinase C-mediated activation of the human voltaje-gated proton channel. Andrology, 5(5), 979-989.
     Google Scholar
  18. Restrepo Betancur G, Duque Cortés JE, Rojano Benjamín A. (2016). Efecto de la quercetina, la L-ergotioneina y la pentoxifilina en el semen equino posdescongelado. Rev Salud Anim, 38(3). Spanish.
     Google Scholar
  19. Martínez Flórez S, González Gallego J, Culebras JM, Tuñon MJ. (2000). Los flavonoides: propiedades y acciones antioxidantes. Nutricion Hospitalaria, XVII(6), 271-278. Spanish.
     Google Scholar
  20. Córdova Izquierdo A, Pérez Gutiérrez JF, Méndez Hernández W, Villa Mancera AE, Huerta Crispín R. (2015). Obtención, evaluación y manipulación del semen de verraco en una unidad de producción mexicana. Revista Veterinaria. 26(1), 69-74. Spanish.
     Google Scholar
  21. Westendorf P, Richeter L, Treu H. (1975). Zur tiefgefrierung von ebersperma Laborund Besamungsergebnisse mit dem Hulsengerger Pailletten-Verfahren. DTW Dtsch Tierarztl Wochenschr, 261-267. Deutsch.
     Google Scholar
  22. Córdova Izquierdo A, Oliva JH, Lleó B, García Artiga C, Corcuera BD, Pérez Gutiérrez JF. (2006). Effect of different thawing temperatures on the viability, in vitro fertilizing capacity and chromatin condensation of frozen boar semen packaged in 5 ml straws. Animal Reproductive Science, 92(1-2), 145-54.
     Google Scholar
  23. Gutiérrez Pérez O, Juárez Mosqueda ML, Uribe Carvajal S, Trujillo Ortega ME. (2009). Boar spermatozoa cryopreservation in low glicerol/trehalose enriched freezing media improves cellular integrity. Cryobiology, 58(3), 287-92.
     Google Scholar
  24. Córdova Izquierdo A, Córdova MS, Córdova Jiménez CA, Pérez Gutiérrez J, Martín Rillo S. (2005). Congelación de semen de verraco en dos tipos de pajillas y capacidad fecundante in vitro de los espermatozoides. CIENCIA Ergo-Sum, 12(3), 271-274. Spanish.
     Google Scholar
  25. Iglesias Reyes A, Guevara González J, López Díaz O, Guerra Liera J, Huerta Crispín R, Sánchez Sánchez R, et al. (2019). Evaluación de la técnica modificada de tinción Giemsa en la valoración acrosomal de espermatozoides de mamíferos. Abanico Veterinario, 9(1), 1-8. Spanish.
     Google Scholar
  26. Moretti E, Mazzi L, Terzuoli G, Bonechi C, Lacoponi F, Martini S, et al. (2012). Effect of quercetin, rutin, naringenin and epicatechin on lipid peroxidation induced in human sperm. Reproductive Toxicology, 34(4), 651-657.
     Google Scholar
  27. Seifi Jamadi A, Kohram H, Shahneh AZ, Ansari M, Macías García B. (2016). Quercetin Ameliorate Motility in Frozen-Thawed Turkmen Stallions Sperm. Journal of Equine Veterinary Science, 45, 73-77.
     Google Scholar
  28. Johinke D, Graaf SP, Bathgate R. (2014). Quercetin reduces the in vitro production of H2O2 during chilled storage of rabbit spermatozoa. Animal Reproduction Science, 151(3-4), 208-219.
     Google Scholar
  29. Ranawat P, Kaushik G, Saikia UN, Pathak CM, Khanduja KL. (2012). Quercetin impairs the reproductive potential of male mice. Andrologia, 45(1),56-65.
     Google Scholar
  30. Córdova Izquierdo A, Torres Trejo DI, Iglesias Reyes AE, Guerra Liera JE, Huerta Crispín R, Villa Mancera AE, et al. (2019). Valoración reproductiva del toro. https://www.researchgate.net/publication/331701226_Valoracion_reproductiva_del_toro Spanish.
     Google Scholar