##plugins.themes.bootstrap3.article.main##

The field of nanotechnology has emerged as a promising course of study branching out into various biomedical fields such as therapeutics, imaging, and diagnostics. Metallic nanoparticles, specifically silver, are an important area of study due to their multifunctionality and diverse morphological characteristics. Amongst the various methods of synthesis of these multifunctional nanoparticles such as physical methods and chemical, green synthesis is the most suitable method due to its eco-friendly nature, cost-effectiveness, and ease of production. This article summarizes the broad spectrum of applications of green silver nanoparticles in the fields of cancer theranostics, imaging and diagnosis, and drug delivery. Bimetallic nanoparticles with silver as one of its major constituents are also explored to get a clear insight into the numerous prospective developments in the respective field.

References

  1. Abel, B., Coskun, S., Mohammed, M., Williams, R., Unalan, H. E., & Aslan, K. (2015). Metal-enhanced fluorescence from silver nanowires with high aspect ratio on glass slides for biosensing applications. The Journal of Physical Chemistry C, 119(1), 675-684.
     Google Scholar
  2. Ahmad, M. Z., Akhter, S., Jain, G. K., Rahman, M., Pathan, S. A., Ahmad, F. J., & Khar, R. K. (2010). Metallic nanoparticles: technology overview & drug delivery applications in oncology. Expert opinion on drug delivery, 7(8), 927-942.
     Google Scholar
  3. Ahmed, M. J., Murtaza, G., Rashid, F., & Iqbal, J. (2019). Eco-friendly green synthesis of silver nanoparticles and their potential applications as antioxidant and anticancer agents. Drug development and industrial pharmacy, 45(10), 1682-1694.
     Google Scholar
  4. Ahmed, N., Fessi, H., & Elaissari, A. (2012). Theranostic applications of nanoparticles in cancer. Drug discovery today, 17(17-18), 928-934.
     Google Scholar
  5. AlSalhi, M. S., Devanesan, S., Alfuraydi, A. A., Vishnubalaji, R., Munusamy, M. A., Murugan, K., ... & Benelli, G. (2016). Green synthesis of silver nanoparticles using Pimpinella anisum seeds: antimicrobial activity and cytotoxicity on human neonatal skin stromal cells and colon cancer cells. International journal of nanomedicine, 11, 4439.
     Google Scholar
  6. Annu, M., Ahmed, S., Kaur, G., Sharma, P., Singh, S., & Ikram, S. (2018). Evaluation of the antioxidant, antibacterial and anticancer (lung cancer cell line A549) activity of Punica granatum mediated silver nanoparticles. Toxicology research, 7(5), 923-930.
     Google Scholar
  7. Arunachalam, K. D., Arun, L. B., Annamalai, S. K., & Arunachalam, A. M. (2015). Potential anticancer properties of bioactive compounds of Gymnema sylvestre and its biofunctionalized silver nanoparticles. International Journal of Nanomedicine, 10, 31.
     Google Scholar
  8. Atale, N., Saxena, S., Nirmala, J. G., Narendhirakannan, R. T., Mohanty, S., & Rani, V. (2017). Synthesis and characterization of Sygyzium cumini nanoparticles for its protective potential in high glucose-induced cardiac stress: a green approach. Applied biochemistry and biotechnology, 181(3), 1140-1154.
     Google Scholar
  9. Aziz, N., Faraz, M., Sherwani, M. A., Fatma, T., & Prasad, R. (2019). Illuminating the anticancerous efficacy of a new fungal chassis for silver nanoparticle synthesis. Frontiers in chemistry, 7, 65.
     Google Scholar
  10. Azizi, M., Ghourchian, H., Yazdian, F., Bagherifam, S., Bekhradnia, S., & Nyström, B. (2017). Anti-cancerous effect of albumin coated silver nanoparticles on MDA-MB 231 human breast cancer cell line. Scientific reports, 7(1), 1-18.
     Google Scholar
  11. Balakumaran, M. D., Ramachandran, R., & Kalaichelvan, P. T. (2015). Exploitation of endophytic fungus, Guignardia mangiferae for extracellular synthesis of silver nanoparticles and their in vitro biological activities. Microbiological research, 178, 9-17.
     Google Scholar
  12. Barabadi, H., Hosseini, O., Kamali, K. D., Shoushtari, F. J., Rashedi, M., Haghi-Aminjan, H., & Saravanan, M. (2020). Emerging theranostic silver nanomaterials to combat lung cancer: a systematic review. Journal of Cluster Science, 31(1), 1-10.
     Google Scholar
  13. Bhattacharyya, S. S., Mandal, S. K., Biswas, R., Paul, S., Pathak, S., Boujedaini, N., ... & Khuda-Bukhsh, A. R. (2008). In vitro studies demonstrate anticancer activity of an alkaloid of the plant Gelsemium sempervirens. Experimental Biology and Medicine, 233(12), 1591-1601.
     Google Scholar
  14. Bilal, M., Rasheed, T., Iqbal, H. M., Li, C., Hu, H., & Zhang, X. (2017). Development of silver nanoparticles loaded chitosan-alginate constructs with biomedical potentialities. International journal of biological macromolecules, 105, 393-400.
     Google Scholar
  15. Brown, A. N., Smith, K., Samuels, T. A., Lu, J., Obare, S. O., & Scott, M. E. (2012). Nanoparticles functionalized with ampicillin destroy multiple-antibiotic-resistant isolates of Pseudomonas aeruginosa and Enterobacter aerogenes and methicillin-resistant Staphylococcus aureus. Applied and environmental microbiology, 78(8), 2768-2774.
     Google Scholar
  16. Cassano, D., Mapanao, A. K., Summa, M., Vlamidis, Y., Giannone, G., Santi, M., ... & Voliani, V. (2019). Biosafety and biokinetics of noble metals: The impact of their chemical nature. ACS Applied Bio Materials, 2(10), 4464-4470.
     Google Scholar
  17. Cherukula, K., Manickavasagam Lekshmi, K., Uthaman, S., Cho, K., Cho, C. S., & Park, I. K. (2016). Multifunctional inorganic nanoparticles: Recent progress in thermal therapy and imaging. Nanomaterials, 6(4), 76.
     Google Scholar
  18. Devi, J. S., & Bhimba, B. V. (2012). Anticancer Activity of Silver Nanoparticles Synthesized by the Seaweed Ulva lactuca Invitro. 1: 242. doi: 10.4172/scientificreports. 242 Page 2 of 5 Volume 1• Issue 4• 2012 silver nitrate solution was added to the filtrate slowly under magnetic stirring conditions for even coating of silver and subjected to heating at 12 C for 10 min. The extract is used as reducing and stabilizing agent for 1mM of Silver nitrate. This one pot green synthesis was the modified method followed by Vigneshwaran et al.[18].
     Google Scholar
  19. Dinparvar, S., Bagirova, M., Allahverdiyev, A. M., Abamor, E. S., Safarov, T., Aydogdu, M., & Aktas, D. (2020). A nanotechnology-based new approach in the treatment of breast cancer: Biosynthesized silver nanoparticles using Cuminum cyminum L. seed extract. Journal of Photochemistry and Photobiology B: Biology, 208, 111902.
     Google Scholar
  20. Duran, N., & Seabra, A. B. (2018). Biogenic synthesized Ag/Au nanoparticles: production, characterization, and applications. Current Nanoscience, 14(2), 82-94.
     Google Scholar
  21. El-Sheekh, M. M., Shabaan, M. T., Hassan, L., & Morsi, H. H. (2020). Antiviral activity of algae biosynthesized silver and gold nanoparticles against Herps Simplex (HSV-1) virus in vitro using cell-line culture technique. International Journal of Environmental Health Research, 1-12.
     Google Scholar
  22. Fridman, J. S., & Lowe, S. W. (2003). Control of apoptosis by p53. Oncogene, 22(56), 9030-9040.
     Google Scholar
  23. Gajbhiye, S., & Sakharwade, S. (2016). Silver nanoparticles in cosmetics. Journal of Cosmetics, Dermatological Sciences and Applications, 6(1), 48-53.
     Google Scholar
  24. Gardea-Torresdey, J. L., Gomez, E., Peralta-Videa, J. R., Parsons, J. G., Troiani, H., & Jose-Yacaman, M. (2003). Alfalfa sprouts: a natural source for the synthesis of silver nanoparticles. Langmuir, 19(4), 1357-1361.
     Google Scholar
  25. Gupta, S., Hemlata, H., & Tejavath, K. (2020). Synthesis, characterization and comparative anticancer potential of phytosynthesized mono and bimetallic nanoparticles using Moringa oleifera aqueous leaf extract. Beilstein Arch, 1, 95.
     Google Scholar
  26. Gurunathan, S., Han, J. W., Eppakayala, V., Jeyaraj, M., & Kim, J. H. (2013). Cytotoxicity of biologically synthesized silver nanoparticles in MDA-MB-231 human breast cancer cells. BioMed research international, 2013.
     Google Scholar
  27. Gurunathan, S., Raman, J., Abd Malek, S. N., John, P. A., & Vikineswary, S. (2013). Green synthesis of silver nanoparticles using Ganoderma neo-japonicum Imazeki: a potential cytotoxic agent against breast cancer cells. International journal of nanomedicine, 8, 4399.
     Google Scholar
  28. He, Y., Du, Z., Lv, H., Jia, Q., Tang, Z., Zheng, X., ... & Zhao, F. (2013). Green synthesis of silver nanoparticles by Chrysanthemum morifolium Ramat. extract and their application in clinical ultrasound gel. International Journal of Nanomedicine, 8, 1809.
     Google Scholar
  29. He, Y., Du, Z., Ma, S., Liu, Y., Li, D., Huang, H., ... & Zheng, X. (2016). Effects of green-synthesized silver nanoparticles on lung cancer cells in vitro and grown as xenograft tumors in vivo. International journal of nanomedicine, 11, 1879.
     Google Scholar
  30. Heydari, R., & Rashidipour, M. (2015). Green synthesis of silver nanoparticles using extract of oak fruit hull (Jaft): synthesis and in vitro cytotoxic effect on MCF-7 cells. International journal of breast cancer, 2015.
     Google Scholar
  31. Iravani, S., Korbekandi, H., Mirmohammadi, S. V., & Zolfaghari, B. (2014). Synthesis of silver nanoparticles: chemical, physical and biological methods. Research in pharmaceutical sciences, 9(6), 385.
     Google Scholar
  32. Jahangirian, H., Lemraski, E. G., Webster, T. J., Rafiee-Moghaddam, R., & Abdollahi, Y. (2017). A review of drug delivery systems based on nanotechnology and green chemistry: green nanomedicine. International journal of nanomedicine, 12, 2957.
     Google Scholar
  33. Jeelani, S., Reddy, R. J., Maheswaran, T., Asokan, G. S., Dany, A., & Anand, B. (2014). Theranostics: A treasured tailor for tomorrow. Journal of pharmacy & bioallied sciences, 6(Suppl 1), S6.
     Google Scholar
  34. Jemal, A., Thomas, A., Murray, T., & Thun, M. (2002). Cancer statistics, 2002. Ca-A Cancer Journal for Clinicians, 52(1), 23-47.
     Google Scholar
  35. Jeyaraj, M., Rajesh, M., Arun, R., MubarakAli, D., Sathishkumar, G., Sivanandhan, G., ... & Ganapathi, A. (2013). An investigation on the cytotoxicity and caspase-mediated apoptotic effect of biologically synthesized silver nanoparticles using Podophyllum hexandrum on human cervical carcinoma cells. Colloids and Surfaces B: Biointerfaces, 102, 708-717.
     Google Scholar
  36. Jeyaraj, M., Sathishkumar, G., Sivanandhan, G., MubarakAli, D., Rajesh, M., Arun, R., ... & Ganapathi, A. (2013). Biogenic silver nanoparticles for cancer treatment: an experimental report. Colloids and surfaces B: Biointerfaces, 106, 86-92.
     Google Scholar
  37. Jiang, X., Fan, X., Xu, W., Zhang, R., & Wu, G. (2019). Biosynthesis of bimetallic Au–Ag nanoparticles using Escherichia coli and its biomedical applications. ACS Biomaterials Science & Engineering, 6(1), 680-689.
     Google Scholar
  38. Jokerst, J. V., & Gambhir, S. S. (2011). Molecular imaging with theranostic nanoparticles. Accounts of chemical research, 44(10), 1050-1060.
     Google Scholar
  39. Kadam, J., Dhawal, P., Barve, S., & Kakodkar, S. (2020). Green synthesis of silver nanoparticles using cauliflower waste and their multifaceted applications in photocatalytic degradation of methylene blue dye and Hg 2+ biosensing. SN Applied Sciences, 2(4), 1-16.
     Google Scholar
  40. Kang, H., Mintri, S., Menon, A. V., Lee, H. Y., Choi, H. S., & Kim, J. (2015). Pharmacokinetics, pharmacodynamics and toxicology of theranostic nanoparticles. Nanoscale, 7(45), 18848-18862.
     Google Scholar
  41. Karmous, I., Pandey, A., Haj, K. B., & Chaoui, A. (2020). Efficiency of the green synthesized nanoparticles as new tools in cancer therapy: insights on plant-based bioengineered nanoparticles, biophysical properties, and anticancer roles. Biological Trace Element Research, 196(1), 330-342.
     Google Scholar
  42. Kathiravan, V., Ravi, S., & Ashokkumar, S. (2014). Synthesis of silver nanoparticles from Melia dubia leaf extract and their in vitro anticancer activity. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 130, 116-121.
     Google Scholar
  43. Kelly, F. M., & Johnston, J. H. (2011). Colored and functional silver nanoparticle− wool fiber composites. ACS applied materials & interfaces, 3(4), 1083-1092.
     Google Scholar
  44. Khanra, K., Panja, S., Choudhuri, I., Chakraborty, A., & Bhattacharyya, N. (2015). Evaluation of antibacterial activity and cytotoxicity of green synthesized silver nanoparticles using Scoparia dulcis. Nano Biomed. Eng, 7(3), 128-133.
     Google Scholar
  45. Khanra, K., Panja, S., Choudhuri, I., Chakraborty, A., & Bhattacharyya, N. (2016). Antimicrobial and cytotoxicity effect of silver nanoparticle synthesized by Croton bonplandianum Baill. leaves. Nanomedicine Journal, 3(1), 15-22.
     Google Scholar
  46. Kikuchi, M., Kuroki, S., Kayama, M., Sakaguchi, S., Lee, K. K., & Yonehara, S. (2012). Protease activity of procaspase-8 is essential for cell survival by inhibiting both apoptotic and nonapoptotic cell death dependent on receptor-interacting protein kinase 1 (RIP1) and RIP3. Journal of Biological Chemistry, 287(49), 41165-41173.
     Google Scholar
  47. Kumar, B., Smita, K., Seqqat, R., Benalcazar, K., Grijalva, M., & Cumbal, L. (2016). In vitro evaluation of silver nanoparticles cytotoxicity on Hepatic cancer (Hep-G2) cell line and their antioxidant activity: Green approach for fabrication and application. Journal of Photochemistry and Photobiology B: Biology, 159, 8-13.
     Google Scholar
  48. Kuppusamy, P., Ichwan, S. J., Al-Zikri, P. N. H., Suriyah, W. H., Soundharrajan, I., Govindan, N., ... & Yusoff, M. M. (2016). In vitro anticancer activity of Au, Ag nanoparticles synthesized using Commelina nudiflora L. aqueous extract against HCT-116 colon cancer cells. Biological trace element research, 173(2), 297-305.
     Google Scholar
  49. Lam, P. L., Wong, W. Y., Bian, Z., Chui, C. H., & Gambari, R. (2017). Recent advances in green nanoparticulate systems for drug delivery: efficient delivery and safety concern. Nanomedicine, 12(4), 357-385.
     Google Scholar
  50. Lateef, A., Ojo, S. A., Folarin, B. I., Gueguim-Kana, E. B., & Beukes, L. S. (2016). Kolanut (Cola nitida) mediated synthesis of silver–gold alloy nanoparticles: antifungal, catalytic, larvicidal and thrombolytic applications. Journal of Cluster Science, 27(5), 1561-1577.
     Google Scholar
  51. Liang, J., Zeng, F., Zhang, M., Pan, Z., Chen, Y., Zeng, Y., ... & Huang, Y. (2015). Green synthesis of hyaluronic acid-based silver nanoparticles and their enhanced delivery to CD44+ cancer cells. RSC Advances, 5(54), 43733-43740.
     Google Scholar
  52. Longhi, C., Santos, J. P., Morey, A. T., Marcato, P. D., Durán, N., Pinge-Filho, P., ... & Yamauchi, L. M. (2015). Combination of fluconazole with silver nanoparticles produced by Fusarium oxysporum improves antifungal effect against planktonic cells and biofilm of drug-resistant Candida albicans. Sabouraudia, 54(4), 428-432.
     Google Scholar
  53. Madamsetty, V. S., Mukherjee, A., & Mukherjee, S. (2019). Recent trends of the bio-inspired nanoparticles in cancer theranostics. Frontiers in pharmacology, 10, 1264.
     Google Scholar
  54. Manikandan, R., Manikandan, B., Raman, T., Arunagirinathan, K., Prabhu, N. M., Basu, M. J., ... & Munusamy, A. (2015). Biosynthesis of silver nanoparticles using ethanolic petals extract of Rosa indica and characterization of its antibacterial, anticancer and anti-inflammatory activities. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 138, 120-129.
     Google Scholar
  55. Maria, B. S., Devadiga, A., Kodialbail, V. S., & Saidutta, M. B. (2015). Synthesis of silver nanoparticles using medicinal Zizyphus xylopyrus bark extract. Applied nanoscience, 5(6), 755-762.
     Google Scholar
  56. Mei, N., Zhang, Y., Chen, Y., Guo, X., Ding, W., Ali, S. F., ... & Chen, T. (2012). Silver nanoparticle‐induced mutations and oxidative stress in mouse lymphoma cells. Environmental and molecular mutagenesis, 53(6), 409-419.
     Google Scholar
  57. Mishra, A., Mehdi, S. J., Irshad, M., Ali, A., Sardar, M., Moshahid, M., & Rizvi, A. (2012). Effect of biologically synthesized silver nanoparticles on human cancer cells. Science of Advanced Materials, 4(12), 1200-1206.
     Google Scholar
  58. Mukherjee, S., & Patra, C. R. (2017). Biologically synthesized metal nanoparticles: recent advancement and future perspectives in cancer theranostics.
     Google Scholar
  59. Mukherjee, S., Chowdhury, D., Kotcherlakota, R., & Patra, S. (2014). Potential theranostics application of bio-synthesized silver nanoparticles (4-in-1 system). Theranostics, 4(3), 316.
     Google Scholar
  60. Nethi, S. K., Mukherjee, A., & Mukherjee, S. (2020). Biosynthesized Gold and Silver Nanoparticles in Cancer Theranostics. Handbook of Nanomaterials and Nanocomposites for Energy and Environmental Applications, 1-15.
     Google Scholar
  61. Palai, P. K., Mondal, A., Chakraborti, C. K., Banerjee, I., & Pal, K. (2019). Green synthesized amino-PEGylated silver decorated graphene nanoplatform as a tumor-targeted controlled drug delivery system. SN Applied Sciences, 1(3), 1-18.
     Google Scholar
  62. Palaniappan, P., Sathishkumar, G., & Sankar, R. (2015). Fabrication of nano-silver particles using Cymodocea serrulata and its cytotoxicity effect against human lung cancer A549 cells line. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 138, 885-890.
     Google Scholar
  63. Pandian, A. M. K., Karthikeyan, C., Rajasimman, M., & Dinesh, M. G. (2015). Synthesis of silver nanoparticle and its application. Ecotoxicology and environmental safety, 121, 211-217.
     Google Scholar
  64. Parveen, K., Banse, V., & Ledwani, L. (2016, April). Green synthesis of nanoparticles: their advantages and disadvantages. In AIP conference proceedings (Vol. 1724, No. 1, p. 020048). AIP Publishing LLC.
     Google Scholar
  65. Patra, S., Mukherjee, S., Barui, A. K., Ganguly, A., Sreedhar, B., & Patra, C. R. (2015). Green synthesis, characterization of gold and silver nanoparticles and their potential application for cancer therapeutics. Materials Science and Engineering: C, 53, 298-309.
     Google Scholar
  66. Prabhu, D., Arulvasu, C., Babu, G., Manikandan, R., & Srinivasan, P. (2013). Biologically synthesized green silver nanoparticles from leaf extract of Vitex negundo L. induce growth-inhibitory effect on human colon cancer cell line HCT15. Process Biochemistry, 48(2), 317-324.
     Google Scholar
  67. Qasim Nasar, M., Zohra, T., Khalil, A. T., Saqib, S., Ayaz, M., Ahmad, A., & Shinwari, Z. K. (2019). Seripheidium quettense mediated green synthesis of biogenic silver nanoparticles and their theranostic applications. Green Chemistry Letters and Reviews, 12(3), 310-322.
     Google Scholar
  68. Ramar, M., Manikandan, B., Marimuthu, P. N., Raman, T., Mahalingam, A., Subramanian, P., ... & Munusamy, A. (2015). Synthesis of silver nanoparticles using Solanum trilobatum fruits extract and its antibacterial, cytotoxic activity against human breast cancer cell line MCF 7. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 140, 223-228.
     Google Scholar
  69. Rauwel, P., Küünal, S., Ferdov, S., & Rauwel, E. (2015). A review on the green synthesis of silver nanoparticles and their morphologies studied via TEM. Advances in Materials Science and Engineering, 2015.
     Google Scholar
  70. Reddy, N. J., Vali, D. N., Rani, M., & Rani, S. S. (2014). Evaluation of antioxidant, antibacterial and cytotoxic effects of green synthesized silver nanoparticles by Piper longum fruit. Materials Science and Engineering: C, 34, 115-122.
     Google Scholar
  71. Sahoo, A. K., Goswami, U., Dutta, D., Banerjee, S., Chattopadhyay, A., & Ghosh, S. S. (2016). Silver nanocluster embedded composite nanoparticles for targeted prodrug delivery in cancer theranostics. ACS Biomaterials Science & Engineering, 2(8), 1395-1402.
     Google Scholar
  72. Salvadori, M. R., Ando, R. A., & Corrêa, B. (2022). Bio-separator and bio-synthesizer of metallic nanoparticles-A new vision in bioremediation. Materials Letters, 306, 130878.
     Google Scholar
  73. Satyavani, K., Gurudeeban, S., Ramanathan, T., & Balasubramanian, T. (2011). Biomedical potential of silver nanoparticles synthesized from calli cells of Citrullus colocynthis (L.) Schrad. Journal of nanobiotechnology, 9(1), 1-8.
     Google Scholar
  74. Satyavani, K., Gurudeeban, S., Ramanathan, T., & Balasubramanian, T. (2012). Toxicity study of silver nanoparticles synthesized from Suaeda monoica on Hep-2 cell line. Avicenna journal of medical biotechnology, 4(1), 35.
     Google Scholar
  75. Sharma, D., Ledwani, L., & Bhatnagar, N. (2015). Antimicrobial and cytotoxic potential of silver nanoparticles synthesized using Rheum emodi roots extract. New Frontiers in Chemistry, 24(2), 121.
     Google Scholar
  76. Shawkey, A. M., Rabeh, M. A., Abdulall, A. K., & Abdellatif, A. O. (2013). Green nanotechnology: anticancer activity of silver nanoparticles using Citrullus colocynthis aqueous extracts. Adv. Life Sci. Technol, 13, 60-70.
     Google Scholar
  77. Sivamaruthi, B. S., Ramkumar, V. S., Archunan, G., Chaiyasut, C., & Suganthy, N. (2019). Biogenic synthesis of silver palladium bimetallic nanoparticles from fruit extract of Terminalia chebula–In vitro evaluation of anticancer and antimicrobial activity. Journal of Drug Delivery Science and Technology, 51, 139-151.
     Google Scholar
  78. Srinoi, P., Chen, Y. T., Vittur, V., Marquez, M. D., & Lee, T. R. (2018). Bimetallic nanoparticles: enhanced magnetic and optical properties for emerging biological applications. Applied Sciences, 8(7), 1106.
     Google Scholar
  79. Sukirtha, R., Priyanka, K. M., Antony, J. J., Kamalakkannan, S., Thangam, R., Gunasekaran, P., ... & Achiraman, S. (2012). Cytotoxic effect of Green synthesized silver nanoparticles using Melia azedarach against in vitro HeLa cell lines and lymphoma mice model. Process Biochemistry, 47(2), 273-279.
     Google Scholar
  80. Tiquia-Arashiro, S., & Rodrigues, D. (2016). Application of nanoparticles. In Extremophiles: Applications in Nanotechnology (pp. 163-193). Springer, Cham.
     Google Scholar
  81. Ullah, I., Khalil, A. T., Ali, M., Iqbal, J., Ali, W., Alarifi, S., & Shinwari, Z. K. (2020). Green-synthesized silver nanoparticles induced apoptotic cell death in MCF-7 breast cancer cells by generating reactive oxygen species and activating caspase 3 and 9 enzyme activities. Oxidative medicine and cellular longevity, 2020.
     Google Scholar
  82. Vanaja, M., Paulkumar, K., Baburaja, M., Rajeshkumar, S., Gnanajobitha, G., Malarkodi, C., ... & Annadurai, G. (2014). Degradation of methylene blue using biologically synthesized silver nanoparticles. Bioinorganic chemistry and applications, 2014.
     Google Scholar
  83. Varghese Alex, K., Tamil Pavai, P., Rugmini, R., Shiva Prasad, M., Kamakshi, K., & Sekhar, K. C. (2020). Green synthesized Ag nanoparticles for bio-sensing and Photocatalytic applications. ACS omega, 5(22), 13123-13129.
     Google Scholar
  84. Vedelago, J., Gomez, C. G., Valente, M., & Mattea, F. (2018). Green synthesis of silver nanoparticles aimed at improving theranostics. Radiation Physics and Chemistry, 146, 55-67.
     Google Scholar
  85. Venkatesan, B., Subramanian, V., Tumala, A., & Vellaichamy, E. (2014). Rapid synthesis of biocompatible silver nanoparticles using aqueous extract of Rosa damascena petals and evaluation of their anticancer activity. Asian Pacific journal of tropical medicine, 7, S294-S300.
     Google Scholar
  86. Venugopal, K., Ahmad, H., Manikandan, E., Arul, K. T., Kavitha, K., Moodley, M. K., ... & Bhaskar, M. (2017). The impact of anticancer activity upon Beta vulgaris extract mediated biosynthesized silver nanoparticles (ag-NPs) against human breast (MCF-7), lung (A549) and pharynx (Hep-2) cancer cell lines. Journal of Photochemistry and Photobiology B: Biology, 173, 99-107.
     Google Scholar
  87. Venugopal, K., Rather, H. A., Rajagopal, K., Shanthi, M. P., Sheriff, K., Illiyas, M., ... & Maaza, M. (2017). Synthesis of silver nanoparticles (Ag NPs) for anticancer activities (MCF 7 breast and A549 lung cell lines) of the crude extract of Syzygium aromaticum. Journal of Photochemistry and Photobiology B: Biology, 167, 282-289.
     Google Scholar
  88. Vijistella Bai, G. (2014). Green Synthesis Of Silver Nanostructures Against Human Cancer Cell Lines And Certain Pathogens. International Journal of Pharmaceutical, Chemical & Biological Sciences, 4(1).
     Google Scholar
  89. Xie, Z., Su, Y., Kim, G. B., Selvi, E., Ma, C., Aragon‐Sanabria, V., ... & Yang, J. (2017). Immune Cell‐Mediated Biodegradable Theranostic Nanoparticles for Melanoma Targeting and Drug Delivery. Small, 13(10), 1603121.
     Google Scholar
  90. Yetisgin, A. A., Cetinel, S., Zuvin, M., Kosar, A., & Kutlu, O. (2020). Therapeutic nanoparticles and their targeted delivery applications. Molecules, 25(9), 2193.
     Google Scholar
  91. Yhee, J. Y., Son, S., Kim, N., Choi, K., & Kwon, I. C. (2014). Theranostic applications of organic nanoparticles for cancer treatment. Mrs Bulletin, 39(3), 239-249.
     Google Scholar
  92. Zavaleta, C., Ho, D., & Chung, E. J. (2018). Theranostic nanoparticles for tracking and monitoring disease state. SLAS TECHNOLOGY: Translating Life Sciences Innovation, 23(3), 281-293.
     Google Scholar
  93. Zeedan, G. S. G., EL-Razik, K. A. A., Allam, A. M., Abdalhamed, A. M., & Zeina, H. A. A. (2020). Evaluations of potential antiviral effects of green zinc oxide and silver nanoparticles against bovine herpesvirus-1. Adv. Anim. Vet. Sci, 8(4), 433-443.
     Google Scholar


Most read articles by the same author(s)