Universidade Federal da Paraíba, Brasil
Universidade Federal da Paraíba, Brasil
Universidade Federal da Paraíba, Brasil
Universidade Federal da Paraíba, Brasil
* Corresponding author

Article Main Content

Pyocyanin is a pigment produced by 95% of Pseudomonas aeruginosa strains and exhibits antimicrobial properties that can be used for different purposes. In this work, PMMA-based nanoparticles that were encapsulated into 200 µg/mL of pyocyanin (Np-Pyo) were produced by the nanoprecipitation method. They were evaluated with respect to antifouling activity against Aspergillus sp. and Penicillium sp. With an encapsulation efficiency of 56%, the NpPyo remained stable for 90 days. Their characteristics were satisfactory for the following parameters: average size (616.90±38.30 nm; blank: 282.58±22.89 nm), polydispersion index (0.51±0.01; blank: 0.45±0.78), zeta potential (-5.13±0.41 mV; blank: -6.44±1.12 mV) and pH (6.18±0.03; blank: 6.42±0.01). The in vitro biofilm formation assay was performed on dolomite coupons measuring 1 cm2, on which the formulation was applied. There were tested conditions with and without immersion for 72h at 30 ºC. In the tests with the immersed coupons, there was fungal colonization; this was, however, lower than that observed in the control. A. niger decreased by 3 log units. No growth was observed on the coupons that were not immersed. The results were promising and demonstrated viability as a means of antifouling protection, particularly on dry surfaces.

References

  1. Adeleye I. A., & Adeleye O. A. (2000). Isolation and identification of microbes associated with paints and weathered painted walls. Journal of Scientific Research and Development, 4, 71-76.
     Google Scholar
  2. Aleksic B., Draghi M., Ritoux S., Bailly S., Lacroix M., Oswald I. P., et al. (2017). Aerosolization of mycotoxins after growth of toxinogenic fungi on wallpaper. Applied and Environmental Microbiology, 83(16): e01001-17, doi: 10.1128/AEM.01001-17.
     Google Scholar
  3. Apostol M., Baret P., Serratrice G., Desbrières J., Putaux J-L., Stébé M-J., et al. (2005). Self-assembly of an amphiphilic iron(iii) chelator: mimicking iron acquisition in marine bacteria. Angewandte Chemie, 117(17): 2636-2638.
     Google Scholar
  4. Arruda R. R. A., Oliveira B. T. M., Bonifácio T. T. C., Morais V. C., Amaral I. P. G., & Vasconcelos U. (2020). Activity of two exometabolites produced by Escherichia coli on the synthesis of pyocyanin. International Journal of Advanced Engineering Research Science, 6: 267–271.
     Google Scholar
  5. Aubry J., Ganachaud F., Addad J-P. C., & Cabane B. (2009). Nanoprecipitation of polymethylmethacrylate by solvent shifting: 1. boundaries. Langmuir, 25(4): 1970-1979.
     Google Scholar
  6. Baron S. S., & Rowe J. J. (1981). Antibiotic action of pyocyanin. Antimicrobial Agents and Chemotherapy, 20: 814–820.
     Google Scholar
  7. Bonifácio T. T. C., Arruda R. R. A., Oliveira B. T. M., Silva J. E. G., & Vasconcelos U. (2020). Exposure to pyocyanin promotes cellular changes in Candida spp. Research Journal of Pharmaceutical, Biological and Chemical Sciences, 11: 111–119.
     Google Scholar
  8. Burge A. (2002). An update on pollen and fungal spore aerobiology. Journal of Allergy and Clinical Immunology, 110(4): 544-552.
     Google Scholar
  9. Birnbaum D. T., Kosmala J. D., & Branno-Peppas L. (2000). Optimization of preparation tecniques for poly (lactic acid-co-glycolic acid) nanoparticles. Journal of Nanoparticle Research, 2: 173–181.
     Google Scholar
  10. Cappitelli F., Cattò C., & Villa F. (2020). The control of cultural heritage microbial deterioration. Microorganisms, 8(10):1542, doi: 10.3390/microorganisms8101542.
     Google Scholar
  11. Carson R. T., Damon M., Johnson L. T., & Gonzalez J.A. (2009). Conceptual issues in designing a policy to phase out metal-based antifouling paints on recreational boats in San Diego Bay. Journal of Environmental Management, 90: 2460–2468.
     Google Scholar
  12. Cepas V., López Y., Muñoz E., Rolo D., Ardanuy C., Martí S., et al. (2019). Relationship between biofilm formation and antimicrobial resistance in Gram-negative bacteria. Microbial Drug Resistance, 25(1): 72-79.
     Google Scholar
  13. Cloutier M., Mantovani D., & Rosei F. (2015). Antibacterial coatings: Challenges, perspectives, and opportunities. Trends in Biotechnology, 33(11): 637-652.
     Google Scholar
  14. CLSI. (2002). Reference method for broth dilution antifungal susceptibility testing of filamentous fungi. Approved standard M38-A. Wayne: CLSI.
     Google Scholar
  15. De Britto S., Gajbar T. D., Satapute P., Sundaram L., Lakshmikantha R. Y., Jogaiah S., et al. (2020). Isolation and characterization of nutrient dependent pyocyanin from Pseudomonas aeruginosa and its dye and agrochemical properties. Scientific Reports, 10: 1542.
     Google Scholar
  16. De la Torre M. A., Gomez-Alarcon G., Vizcaino C., & Garcia M.T. (1993). Biochemical mechanisms of stone alteration carried out by filamentous fungi living in monuments. Biogeochemistry, 19: 129-147.
     Google Scholar
  17. Dias S. B. D., Jaramillo L. Y. A., Guedes D., Duran R., Carbon A., Bertolino L. C., et al. (2021). Assessment of acid mist on mortar biodeterioration simulating the wall of Jardim da Princesa, the National Museum of Rio de Janeiro, Brazil. International Biodegradation and Biodeterioration, 157: 105155, doi: 10.1016/j.ibiod.2020.105155.
     Google Scholar
  18. Dias D. S. B., Vasconcelos U., Lutterbach M. T. S., Cravo-Laureau C., & Sérvulo E. F. C. (2016). Sessile aerobic microbiota from the wall of the National Museum, Brazil: characterization and quantification. Canadian Journal of Pure and Applied Science, 10(3): 3941-3949.
     Google Scholar
  19. El-Zawawy N. A., & Ali S. S. (2016). Pyocyanin as anti-tyrosinase and anti tinea corporis: A novel treatment study. Microbial Pathogenesis, 100: 213-220.
     Google Scholar
  20. Fessi H., Puisieux F., Devissaguet, J-Ph., Ammoury N., & Benita S. (1989). Nanocapsule formation by interfacial polymer deposition following solvent displacement. International Journal of Pharmaceutics, 55(1): R1-R4.
     Google Scholar
  21. Fiori J. J., Silva L. L., Picolli K. C., Ternus R., Ilha J., Decalton F., et al. (2017). Zinc oxide nanoparticles as antimicrobial additive for acrylic paint. Material Science Forum, 899: 248-253.
     Google Scholar
  22. Furno F., Morley K. S., Wong B., Sharp B. L., Arnold P. L., Howdle S. M., et al. (2004). Silver nanoparticles and polymeric medical devices: a new approach to prevention of infection? Journal of Antimicrobial Chemotherapy, 54:1019-1024.
     Google Scholar
  23. Gallego-Cartagena E., Morillas H., Maguregui M., Patiño-Camelo K., Marcaida I., Morgado-Gamero W., et al. (2020). A comprehensive study of biofilms growing on the built heritage of a Caribbean industrial city in correlation with construction materials. International Biodegradation and Biodeterioration, 147: 104874, doi: 10.1016/j.ibiod.2019.104874.
     Google Scholar
  24. Gaumet M., Vargas A., Gurny R., & Delie F. (2008). Nanoparticles for drug delivery: The need for precision in reporting particle size parameters. European Journal of Pharmaceutics and Biopharmaceutics, 69: 1-9.
     Google Scholar
  25. Gaylarde C. G., & Gaylarde P. M. (2005). A comparative study of the major microbial biomass on exterior buildings in Europe and Latin America. International Biodeterioration and Biodegradation, 55(2): 131-139.
     Google Scholar
  26. Gharieb M. M., El-Sheekh M. M., El-Sabbagh S., & Hamza W.T. (2013). Efficacy of pyocyanin produced by Pseudomonas aeruginosa as a topical treatment of infected skin of rabbits. Biotechnology: An Indian Journal, 7: 184–193.
     Google Scholar
  27. Ghoul M., & Mitri S. (2016). The ecology and evolution of microbial competition. Trends in Microbiology, 24(10,): 833-845.
     Google Scholar
  28. Gladis F., Eggert A., Karsten U., & Schumann R. (2010). Prevention of biofilm growth on man-made surfaces: evaluation of antialgal activity of two biocides and photocatalytic nanoparticles. Biofouling, 26(1): 89-101.
     Google Scholar
  29. Gonçalves T., & Vasconcelos U. (2021). Colour me blue: The history and biotechnological potential of pyocyanin. Molecules, 26: 927, doi: 10.3390/molecules26040927.
     Google Scholar
  30. Guterres S. S., Fessi H., Barra G., Devissaguet J-Ph., & Puisieux F. (1995). Poly(D-L-lactide) nanocapsule containg diclofenac: I. formulation and stability study. International Journal of Pharmaceutics, 113: 57-63.
     Google Scholar
  31. Harding M. W., Marques L. L. R., Howard R. J., & Olson M. E. (2009). Can filamentous fungi form biofilms? Trends in Microbiology, 17(11): 475-480.
     Google Scholar
  32. Heaton P. E., Callow M. E., Butler G. M., & Milne A. (1991). Control of mould growth by anti-fungal paints. International Biodeterioration, 27(2): 163-173.
     Google Scholar
  33. Hoque J., Akkapeddi P., Yadav V., Manjunath G. B., Uppu D. S. S. M., Konai M. M., et al. (2015). Broad spectrum antibacterial and antifungal polymeric paint materials: synthesis, structure–activity relationship, and membrane-active mode of action. ACS Applied Materials & Interfaces, 7(3): 1804-1815.
     Google Scholar
  34. Ivanovna L. V., Viktorovna M. L., & Viktorovich T. R. (2016). Method of assessment quality protective and decorative coating concrete cement. Case Studies in Construction Materials, 4: 81-84.
     Google Scholar
  35. Jämsä S., Mahlberg R., Holopainen U., Ropponen J., Savolainen J., & Ritschkoff A. C. (2013). Slow release of a biocidal agent from polymeric microcapsules for preventing biodeterioration. Progress in Organic Coatings, 76: 269– 276.
     Google Scholar
  36. Jameel Z. J., Hussain A. F., Al-Mahdawi M. A., Alkerim N. F. A., & Alrahman E. S. A. (2017). Bioactivity of pyocyanin of Pseudomonas aeruginosa clinical isolates against a variety of human pathogenic bacteria and fungi species. The International Arabic Journal of Antimicrobial Agents, 7: 2, doi: 10.3823/812
     Google Scholar
  37. Jayaseelan S., Ramaswamy D., & Dharmaraj S. (2014). Pyocyanin: Production, applications, challenges and new insights. World Journal of Mirobiology and Biotechnology, 30: 1159–1168.
     Google Scholar
  38. Sánchez-Espinosa, K. C., Rojas-Flores T. I., Davydenko, S. R., Venéro-Fernández S. J., & Almaguer, M. (2021). Fungal populations in the bedroom dust of children in Havana, Cuba, and its relationship with environmental conditions. Environmental Science Pollution Research, 28: 53010–53020, doi: 10.1007/s11356-021-14231-8.
     Google Scholar
  39. Khare E., & Arora N. K. (2011). Dual activity of pyocyanin from Pseudomonas aeruginosa – Antibiotic against phytopathogen and signal molecule for biofilm development by rhizobia. Canadian Journal of Microbiology, 57: 708–713.
     Google Scholar
  40. Krsmanovic M., Biswas D., Ali H., Kumar A., Ghosh R., & Dickerson A. K. (2021). Hydrodynamics and surface properties influence biofilm proliferation. Advances in Colloid and Interface Science, 288: 102336, doi: 10.1016/j.cis.2020.102336.
     Google Scholar
  41. Le Norcy T., Niemann H., Proksch P., Linossier I., Vallé-Réhel K., Hellio C., et al. (2017). Anti-Biofilm effect of biodegradable coatings based on hemibastadin derivative in marine environment. International Journal of Molecular Science, 18(7): 1520, doi: 10.3390/ijms18071520.
     Google Scholar
  42. Lekshmi U. M. D., Poovi G., Kishore N., & Reddy P. N. (2010). In vitro characterization and in vivo toxicity study of repaglinide loaded poly (methyl methacrylate) nanoparticles. International Journal of Pharmaceutics, 396(1-2): 194-203.
     Google Scholar
  43. Lima M. L., & Albuquerque C. N. (2012). Preparo e caracterização de nanopartículas de poli(ε-caprolactona) contendo megazol, agente anti-chagásico. Rev Bras Farm 93(4): 493-498. Portuguese.
     Google Scholar
  44. Liu H., & Chen J. (2009) Indomethacin-loaded poly (butylcyanoacrylate) nanoparticles: preparation and characterization. PDA Journal of Pharmaceutical Science and Techonology, 63: 207-216.
     Google Scholar
  45. Lyra A. M., Ribeiro J. P. M., Nadal J. M., Baglie S., Klein T., Novatski A., et al. (2021). Efavirenz-loaded polymeric nanocapsules: Formulation, development, and validation of an RP-UHPLC-DAD method for drug quantification, determination of encapsulation efficiency, stability study, and dissolution profile. Journal of Applied Pharmaceutical Science, 11(2): 93-101.
     Google Scholar
  46. Manso S., de Muynck W., Segura I., Aguado A., Steppe K., Boon N., et al. (2014). Bioreceptivity evaluation of cementitious materials designed to stimulate biological growth. Science of the Total Environment, 481: 232–241.
     Google Scholar
  47. Marrez D. A., & Mohamad H. S. (2020). Biological activity and applications of pyocyanin produced by Pseudomonas aeruginosa. Open Access Journal of Biomedical Science, 1(4): 140-144.
     Google Scholar
  48. Miller A. Z., Sanmartín P., Pereira-Pardo L., Dionísio A., Saiz-Jimenez C., & Macedo M. F. (2012). Bioreceptivity of building stones: a review. Science of the Total Environment, 426: 1–12.
     Google Scholar
  49. Mousavi B., Hedayati M. T., Hedayati N., Ilkit M., & Syedmousavi S. (2016). Aspergillus species in indoor environments and their possible occupational and public health hazards. Current Medical Mycology, 2(1): 36-42.
     Google Scholar
  50. Niwa T., Takeuchi H., Hino N., & Kunou Y. (1993). Preparation of biodegradable nanospheres of water soluble and insoluble drugs with dl-lactide/glycolide copolymer by a novel spontaneous emulsification solvent diffusion method, and the drug release behavior. Journal of Control Release, 25: 89–98.
     Google Scholar
  51. Nordstierna L., Abdalla A. A., Masuda M., Skarnemark G., & Nydén M. (2010). Molecular release from painted surfaces: Free and encapsulated biocides. Progress in Organic Coatings, 69: 45-48.
     Google Scholar
  52. Nordstierna L., Movahedi A., & Nydén, M. (2011). New route for microcapsule synthesis. Journal of Dispersion Science and Technology, 32(3): 310-311.
     Google Scholar
  53. Nowack B., & Bucheli, T.D. (2007). Occurrence, behavior and effects of nanoparticles in the environment. Environmental Pollution, 150(1): 5-22.
     Google Scholar
  54. Ogawa A., Celikkol-Aydin S., Gaylarde C., Baptista-Neto J. A., & Beech I. (2017). Microbial communities on painted wet and dry external surfaces of a historic fortress in Niterói, Brazil. International Biodegradation and Biodeterioration, 123: 164-173.
     Google Scholar
  55. Ohfuji K., Sato N., Hamada-Sato N., Kobayashi T., Imada C., Okuma H., et al. (2004). Construction of a glucose sensor based on a screen-printed electrode and a novel mediator pyocyanin from Pseudomonas aeruginosa. Biosensors and Bioelectronics, 19: 1237-1244.
     Google Scholar
  56. Özyürek S. B., Gür S. D., & Bilkay I. S. (2016). Investigation of antimicrobial activity of pyocyanin produced by Pseudomonas aeruginosa strains isolated from different clinical aspecimens. Hacettep Journal of Biology and Chemistry, 44: 1–6.
     Google Scholar
  57. Paiva-Santos A. C., Mascarenhas-Melo F., Coimbra S. C., Pawar K. D., Peixoto D., Chá-Chá R., et al. (2021). Nanotechnology-based formulations toward the improved topical delivery of anti-acne active ingredients. Expert Opinion on Drug Delivery, 18(10): 1435-1454.
     Google Scholar
  58. Palanichamy S., & Subramanian G. (2017). Antifouling properties of marine bacteriocin incorporated epoxybased paint. Progress in Organic Coatings, 103: 33-39.
     Google Scholar
  59. Palko M., Deáková K. (2014). Aesthetic and technical problems of renovated residential buildings facade - prevention of defects. Advances Material Research, 855: 62-66.
     Google Scholar
  60. Pitt J. I. (1994). The current role of Aspergillus and Penicillium in human and animal health. Journal of Medical and Veterinary Micology, 32(1): 17-32.
     Google Scholar
  61. Priyaja P., Jayesh P., Haseeb M., Jose B., Phillip R., & Bright Singh I. S. (2013). Evaluation of pyocyanin toxicity in various life stages of Penaeus monodon and in nitrifying bacterial consortia for their safe application in recirculating aquaculture systems (RAS) to abrogate pathogenic vibrios. Aquaculture International, 25: 743–753.
     Google Scholar
  62. Priyaja P., Jayesh P., Philip R., & Singh I. S. B. (2016). Pyocyanin induced in vitro oxidative damage and its toxicity level in human, fish and insect cell lines for its selective biological application. Cytotechnology, 68: 143–155.
     Google Scholar
  63. Rao J. P., & Geckeler K. E. (2011). Polymer nanoparticles: Preparation techniques and size-control parameters. Progress in Polymer Science, 36: 887-913.
     Google Scholar
  64. Richardson M., & Rautemaa-Richardson R. (2019). Exposure to Aspergillus in home and healthcare facilities’ water environments: focus on biofilms. Microorganisms, 7(1): 7, doi:10.3390/microorganisms7010007.
     Google Scholar
  65. Schaffazick R. S., Guterres S. S., Freitas L. L., & Pohlmann R. A. (2003). Caracterização e estabilidade fisico-química de sistemas poliméricos nanoparticulados para administração de fármacos. Quim Nova 26: 726-737. Portuguese.
     Google Scholar
  66. Schoknecht U., Gruycheva J., Mathies H., Bergmann H., & Burkhardt M. (2009). Leaching of biocides used in façade coatings under laboratory test conditions. Environmental Science and Technology, 43(24): 9321-9328.
     Google Scholar
  67. Shirakawa M. A., Tavares R. G., Gaylarde C. C., Taqueda M. E. S., Loh K., & John V.M. (2010). Climate as the most important factor determining anti-fungal biocide performance in paint films. Science of the Total Environment, 408(23): 5878-5886.
     Google Scholar
  68. Siddiqui N., Bhardwaj A., Hada E., Yadav V. S., & Goyal D. (2018). Synthesis, characterization and antimicrobial study of poly (methyl methacrylate)/Ag nanocomposites. Vacuum, 153: 6-11.
     Google Scholar
  69. Silva J. E. G., Bonifácio T. T. C., Arrruda R. R. A., Kretzschmar E. A. M., & Vasconcelos U. (2020). Atividade bioestática da piocianina sobre fungos filamentosos isolados de parede de concreto. Int J Develop Res 10: 35230–35264. Portuguese.
     Google Scholar
  70. Silva D. F., Silva A. C. L., Diniz Neto H., Oliveira H. M. B. F., Medeiros C. I. S., Pereira J. A., et al. (2018). Activity anti-Candida albicans and effects of the association of β-citronellol with three antifungal azolics. Latin American Journal of Pharmacy, 1: 182-190.
     Google Scholar
  71. Singh I., Mishra A., & Kushwaha R. K. S. (2009). Dermatophytes, related keratinophilic and opportunistic fungi in indoor dust of houses and hospitals. Indian Journal of Medical Microbiology, 27(3): 242-246.
     Google Scholar
  72. Stirlin R., Uzunovic A., & Morris P.I. (2011). Control of black stain fungi with biocides in semitransparent wood coatings. Forest Products Journal, 61(5): 359-364.
     Google Scholar
  73. Sun Y., Hou J., Cheng R., Sheng Y., Zhang X., & Sundell J. (2019). Indoor air quality, ventilation and their associations with sick building syndrome in Chinese homes. Energy and Buildings, 197: 112-119.
     Google Scholar
  74. Trojer M. A., Nordstierna L., Bergek J., Blanck H., Holmberg K., & Nydén M. (2015). Use of microcapsules as controlled release devices for coatings. Advances in Colloid Interface Science, 222: 18-43.
     Google Scholar
  75. Ünal H. (2018). Antibiofilm coatings. In Tiwari A. (Ed.) Handbook of antimicrobial Coatings. (pp. 301-319). Elsevier.
     Google Scholar
  76. Van Dijck P., Sjollema J., Cammue B. P. A., Lagrou K., Berman J., d’Enfert C., et al. (2018). Methodologies for in vitro and in vivo evaluation of efficacy of antifungal and antibiofilm agents and surface coatings against fungal biofilms. Microbial Cell, 5(7): 300-326.
     Google Scholar
  77. Vasconcelos U., Lima M. A. G. A., & Calazans G. M. T. (2010). Pseudomonas aeruginosa associated with negative interactions on coliform bacteria growth. Canadian Journal of Pure and Applied Sciences, 4: 1133–1139.
     Google Scholar
  78. Viana A. A. G., Oliveira B. T. M., Cavalcanti T. G., Sousa K. A., Mendonça E. A. M., Amaral I. P. G., et al. (2018). Correlation between pyocyanin production and hydrocabonoclactic activity in nine strains of Pseudomonas aeruginosa. International Journal of Advanced Engineering Research and Science, 2018(5): 212–223.
     Google Scholar
  79. Vipin C., Ashwini P., Kavya A. V., & Rekha P.D. (2017). Overproduction of pyocyanin in Pseudomonas aeruginosa by supplementation of pathway precursor shikimic acid and evaluation of its activity. Research Journal of Pharmacy and Technology, 10: 533–536.
     Google Scholar
  80. Wang X., Cai W., Gerrits van den Ende A. H. G., Zhang J., Xie T., Xi L., et al. (2018). Indoor wet cells as a habitat for melanized fungi, opportunistic pathogens on humans and other vertebrates. Scientific Reports, 8: 7685, doi: 10.1038/s41598-018-26071-7.
     Google Scholar
  81. Wei S., Jiang Z., Liu H., Zhou D., & Sanchez-Silva M. (2013). Microbiologically induced deterioration of concrete: a review. Brazilian Journal of Microbiology, 44(4): 1001-1007.
     Google Scholar
  82. Wongsagonsup R., Shobsngob S., Oonkhanond B., & Varavinit S. (2005). Zeta potential (ζ) analysis for the determination of protein content in rice flour. Starch, 57(1): 25-31.
     Google Scholar
  83. Yin W., Wang Y., Liu L., & He J. (2019). Biofilms: the microbial “protective clothing” in extreme environments. International Journal of Molecular Science, 20(14): 3423, doi: 10.3390/ijms20143423.
     Google Scholar
  84. Zock J-P., Jarvis D., Luczynska C., Sunyer J., & Burney P. (2002). Housing characteristics reported mold exposure, and asthma in the European Community Respiratory Health Survey. Journal of Allergy and Clinical Immunology, 110(2): 285–292.
     Google Scholar
  85. Żukiewicz-Sobczak W.A. (2013). The role of fungi in allergic diseases. Postępy Dermatologii i Alergologii, 30(1): 42-45.
     Google Scholar