Composition and Adaptation of the Enteric Neural System in Laboratory Rodents: A Cellular Overview


  •   Gerson L. M. Abreu

  •   Adriano C. C. Loureiro

  •   Paula M. Soares

  •   Stela M. S. Felipe

  •   Raquel M. Freitas

  •   Juliana O. Alves

  •   Luís H. P. Santos

  •   Vânia M. Ceccatto


The enteric nervous system (ENS) is a neuron network present in the digestive system. Intestinal tract anatomic differences and cellular composition in different animals can help with interaction with environmental comprehension, which is a pertinent theme in molecular and cellular neurophysiology. In mammals, ENS is not the same in all species; rodents, generally, are great models for digestive tract adaptation study in physiologic process and environmental adaptation interpretation. This study is a narrative overview that describes morphological and cellular composition characterization in rodent neural enteric systems. Interstitial Cajal cells structural characteristics; ENS embryonic cell; system adaptation mediated by fasting, acute and chronic starve; gestation and lactation; temperature and diet; parasitism and rodent caloric restriction were aborded. Seasonal or transitory changes in intestine size probably occur when connected to food quality than its availability. Changes in female intestine size are reversible and periodic, increasing during lactation rodent as an attractive model for digestive flexibility study in the intestine size adjustment area. Enteric nervous system neuron morphological classification is presented, according to digestive tract localization and animal species. In conclusion, a significant change in intestinal mass and length in different rodent species can implicate intestinal motility during and after intestinal tract injury.

Keywords: Cajal cells, ENS embryonic cells, enteric capacity, enteric cell, neurons


Bayliss, W. M., & Starling, E. H. (1899). The movements and innervation of the small intestine. The Journal of Physiology, 24(2), 99–143.

Bern, M. J., Sturbaum, C. W., Karayalcin, S. S., Berschneider, H. M., Wachsman, J. T., & Powell, D. W. (1989). Immune system control of rat and rabbit colonic electrolyte transport. Role of prostaglandins and enteric nervous system. Journal of Clinical Investigation, 83(6), 1810–1820.

Brehmer, A., Schrödl, F., & Neuhuber, W. (2002). Morphological phenotyping of enteric neurons using neurofilament immunohistochemistry renders chemical phenotyping more precise in porcine ileum. Histochemistry and Cell Biology, 117(3), 257–263.

Bronner, M. E., & LeDouarin, N. M. (2012). Development and evolution of the neural crest: An overview. Developmental Biology, 366(1), 2–9.

Brown, R. C., Kelleher, J., & Losowsky, M. S. (1979a). The effect of pectin on the structure and function of the rat small intestine. British Journal of Nutrition, 42(3), 357–365.

Brown, R. C., Kelleher, J., & Losowsky, M. S. (1979b). The effect of pectin on the structure and function of the rat small intestine. British Journal of Nutrition, 42(3), 357–365.

Campbell, K. L., & MacArthur, R. A. (1998). Nutrition and the energetic tactics of muskrats ( Ondatra zibethicus ): morphological and metabolic adjustments to seasonal shifts in diet quality. Canadian Journal of Zoology, 76(1), 163–174.

Cañas, R., Romero, J. J., & Baldwin, R. L. (1982). Maintenance Energy Requirements during Lactation in Rats. The Journal of Nutrition, 112(10), 1876–1880.

Coelho-Aguiar, J. de M., Bon-Frauches, A. C., Gomes, A. L. T., Veríssimo, C. P., Aguiar, D. P., Matias, D., et al. (2015a). The Enteric Glia: Identity and Functions. Glia, 63(6), 921–935.

Coelho-Aguiar, J. de M., Bon-Frauches, A. C., Gomes, A. L. T., Veríssimo, C. P., Aguiar, D. P., Matias, D., et al. (2015b). The Enteric Glia: Identity and Functions. Glia, 63(6), 921–935.

Corp, N., Gorman, M. L., & Speakman, J. R. (1997). Apparent Absorption Efficiency and Gut Morphometry of Wood Mice, Apodemus sylvaticus, from Two Distinct Populations with Different Diets. Physiological Zoology, 70(6), 610–614.

Costa, M. (2000). Anatomy and physiology of the enteric nervous system. Gut, 47(90004), 15iv–1519.

D. M. Kristan. (2002). Effects of intestinal nematodes during lactation: consequences for host morphology, physiology and offspring mass. J. Exp. Biol, 205(24), 3955.

D. M. Kristan, & K. A. Hammond. (2000). Combined effects of cold exposure and sub-lethal intestinal parasites on host morphology and physiology. J. Exp. Biol., 203(22), 3495–3504.

Davanger, S., Ottersen, O. P., & Storm-Mathisen, J. (1987). Immunocytochemical localization of GABA in cat myenteric plexus. Neuroscience Letters, 73(1), 27–32.

Demment, M. W., & van Soest, P. J. (1985). A Nutritional Explanation for Body-Size Patterns of Ruminant and Nonruminant Herbivores. The American Naturalist, 125(5), 641–672.

Dickinson, D. P., Machnicki, M., Ali, M. M., Zhang, Z., & Sohal, G. S. (2004). Ventrally emigrating neural tube (VENT) cells: a second neural tube-derived cell population. Journal of Anatomy, 205(2), 79–98.

Durbec, P. L., Larsson-Blomberg, L. B., Schuchardt, A., Costantini, F., & Pachnis, V. (1996). Common origin and developmental dependence on c-ret of subsets of enteric and sympathetic neuroblasts. Development, 122(1), 349–358.

Ershoff, B. H., & Deuel, H. J. (1944). Inadequacy of Lactose and Beta-Lactose as Dietary Carbohydrates for the Rat. The Journal of Nutrition, 28(4), 225–234.

Espinosa-Medina, I., Jevans, B., Boismoreau, F., Chettouh, Z., Enomoto, H., Müller, T., et al. (2017). Dual origin of enteric neurons in vagal Schwann cell precursors and the sympathetic neural crest. Proceedings of the National Academy of Sciences, 114(45), 11980–11985.

F. Sabet Sarvestani, F. Rahmanifar, & A. Tamadon. (2015). Histomorphometric changes of small intestine in pregnant rat. Vet. Res. Forum an Int. Q. J., 6(1), 69–73.

Fu, Y.-Y., Peng, S.-J., Lin, H.-Y., Pasricha, P. J., & Tang, S.-C. (2013). 3-D imaging and illustration of mouse intestinal neurovascular complex. American Journal of Physiology-Gastrointestinal and Liver Physiology, 304(1), G1–G11.

Furness, J. (1998). Intrinsic primary afferent neuronsof the intestine. Progress in Neurobiology, 54(1), 1–18.

Furness, J. B., & Stebbing, M. J. (2018). The first brain: Species comparisons and evolutionary implications for the enteric and central nervous systems. Neurogastroenterology & Motility, 30(2), e13234.

Furness, John B. (2012). The enteric nervous system and neurogastroenterology. Nature Reviews Gastroenterology & Hepatology, 9(5), 286–294.

Gabella, G. (1971). Neuron size and number in the myenteric plexus of the newborn and adult rat. Journal of Anatomy, 109(Pt 1), 81–95.

Gershon, M. D. (1981). The Enteric Nervous System. Annual Review of Neuroscience, 4(1), 227–272.

Hammond, K. A. (1993). Seasonal changes in gut size of the wild prairie vole ( Microtus ochrogaster ). Canadian Journal of Zoology, 71(4), 820–827.

Hansen, I., Knudsen, K. E. B., & Eggum, B. O. (1992). Gastrointestinal implications in the rat of wheat bran, oat bran and pea fibre. British Journal of Nutrition, 68(2), 451–462.

Huizinga, J. D., Chen, J.-H., Mikkelsen, H. B., Wang, X.-Y., Parsons, S. P., & Zhu, Y. F. (2013). Interstitial cells of Cajal, from structure to function. Frontiers in Neuroscience, 7.

Hume I., Beiglböck C., Ruf T., Frey-Roos, F., Bruns U., & Arnold W. (2002). Seasonal changes in morphology and function of the gastrointestinal tract of free-living alpine marmots (Marmota marmota ). Journal of Comparative Physiology B: Biochemical, Systemic, and Environmental Physiology, 172(3), 197–207.

Ikegami, S., Tsuchihashi, F., Harada, H., Tsuchihashi, N., Nishide, E., & Innami, S. (1990). Effect of Viscous Indigestible Polysaccharides on Pancreatic-Biliary Secretion and Digestive Organs in Rats. The Journal of Nutrition, 120(4), 353–360.

Lindblad-Toh, R. H., Birney, K., Rogers, E., Abril, J., Agarwal, P., Agarwala, R., et al. (2002) Initial sequencing and comparative analysis of the mouse genome. Nature, 420(6915), 520–562.

Lawrence J. V., Fischer J. E., Sutton T. (1956). Adaption of the Rat to a High Lactose Diet: Effect of the Size of the Cecum, The Ohio Journal of Science, 56(2), 87-92.

Komuro, T. (1999). Comparative morphology of interstitial cells of Cajal: Ultrastructural characterization. Microscopy Research and Technique, 47(4), 267–285.

Kristan, D. M., & Hammond, K. A. (2001). Parasite infection and caloric restriction induce physiological and morphological plasticity. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, 281(2), R502–R510.

Kristan, D. M., & Hammond, K. A. (2006). Effects of three simultaneous demands on glucose transport, resting metabolism and morphology of laboratory mice. Journal of Comparative Physiology B, 176(2), 139–151.

Król, E., Johnson, M. S., & Speakman, J. R. (2003). Limits to sustained energy intake VIII. Resting metabolic rate and organ morphology of laboratory mice lactating at thermoneutrality. Journal of Experimental Biology, 206(23), 4283–4291.

Król, E., Redman, P., Thomson, P. J., Williams, R., Mayer, C., Mercer, J. G., et al. (2005). Effect of photoperiod on body mass, food intake and body composition in the field vole, Microtus agrestis. Journal of Experimental Biology, 208(3), 571–584.

Kurtz, C. C., Lindell, S. L., Mangino, M. J., & Carey, H. v. (2006). Hibernation confers resistance to intestinal ischemia-reperfusion injury. American Journal of Physiology-Gastrointestinal and Liver Physiology, 291(5), G895–G901.

L. D. Bacigalupe, & F. Bozinovic. (2002). Design, limitations and sustained metabolic rate: lessons from small mammals. J. Exp. Biol., 205(19), 2963–2970.

Lee, S. E., Wi, J. S., Min, Y. il, Jung, C., Ahn, K. Y., Bae, C. S., et al. (2009). Distribution and three-dimensional appearance of the interstitial cells of Cajal in the rat stomach and duodenum. Microscopy Research and Technique, 72(12), 951–956.

Levrat, M.-A., Behr, S. R., Rémésy, C., & Demigné, C. (1991). Effects of Soybean Fiber on Cecal Digestion in Rats Previously Adapted to a Fiber-Free Diet. The Journal of Nutrition, 121(5), 672–678.

M. Gunn. (1968). Histological and histochemical observations on the myenteric and submucous plexuses of mammals. J. Anat., 102(Pt. 2), 223–239.

Maes, M., Cogliati, B., Crespo Yanguas, S., Willebrords, J., & Vinken, M. (2015). Roles of connexins and pannexins in digestive homeostasis. Cellular and Molecular Life Sciences, 72(15), 2809–2821.

McDonald, T. J., Wang, Y. F., Mao, Y. K., Broad, R. M., Cook, M. A., & Daniel, E. E. (1993). PYY: a neuropeptide in the canine enteric nervous system. Regulatory Peptides, 44(1), 33–48.

McNurlan, M. A., Tomkins, A. M., & Garlick, P. J. (1979). The effect of starvation on the rate of protein synthesis in rat liver and small intestine. Biochemical Journal, 178(2), 373–379.

McWilliams, S. R., & Karasov, W. H. (2014). Spare capacity and phenotypic flexibility in the digestive system of a migratory bird: defining the limits of animal design. Proceedings of the Royal Society B: Biological Sciences, 281(1783), 20140308.

MORGAN, T. B., & YUDKIN, J. (1957). The Vitamin-Sparing Action of Sorbitol. Nature, 180(4585), 543–545. doi: 10.1038/180543a0

Musara, C., & Vaillant, C. (2013). Immunohistochemical studies of the enteric nervous system and interstitial cells of Cajal in the canine stomach. Onderstepoort J Vet Res, 80(1).

Myrcha, A. (1964). Variations in the length and weight of the alimentary tract of Clethrionomys glareolus (Schreber, 1780). Acta theriol. 9,139–148.

Naya, D. E., Bozinovic, F., & Karasov, W. H. (2008). Latitudinal Trends in Digestive Flexibility: Testing the Climatic Variability Hypothesis with Data on the Intestinal Length of Rodents. The American Naturalist, 172(4), E122–E134.

North, R. A. (1973). The calcium-dependent slow after-hyperpolarization in myenteric plexus neurones with tetrodotoxin-resistant action potentials. British Journal of Pharmacology, 49(4), 709–711.

Parathan, P., Wang, Y., Leembruggen, A. J. L., Bornstein, J. C., & Foong, J. PP. (2020). The enteric nervous system undergoes significant chemical and synaptic maturation during adolescence in mice. Developmental Biology, 458(1), 75–87.

Pigliucci, & Schmitt. (1999). Genes affecting phenotypic plasticity in Arabidopsis: pleiotropic effects and reproductive fitness of photomorphogenic mutants. Journal of Evolutionary Biology, 12(3), 551–562.

Price, E. R., Ruff, L. J., Guerra, A., & Karasov, W. H. (2013). Cold exposure increases intestinal paracellular permeability to nutrients in the mouse. Journal of Experimental Biology, 216(21): 4065–4070.

Rao, M., & Gershon, M. D. (2015). Bugs, Guts, and Glia: How Microbiota Influence Enteric Gliogenesis and Migration. Neuron, 85(2), 229–230.

Rodrigues, D. M., Li, A. Y., Nair, D. G., & Blennerhassett, M. G. (2011). Glial cell line-derived neurotrophic factor is a key neurotrophin in the postnatal enteric nervous system. Neurogastroenterology & Motility, 23(2), e44–e56.

S. A. Barnett, & E. M. Widdowson. (1965). Organ-weights and body-composition in mice bred for many generations at – 3˚C. Proceedings of the Royal Society of London. Series B. Biological Sciences, 162(989), 502–516.

Sakata, T. (1987). Stimulatory effect of short-chain fatty acids on epithelial cell proliferation in the rat intestine: a possible explanation for trophic effects of fermentable fibre, gut microbes and luminal trophic factors. British Journal of Nutrition, 58(1), 95–103.

Sanders, K. M., Ward, S. M., & Koh, S. D. (2014). Interstitial Cells: Regulators of Smooth Muscle Function. Physiological Reviews, 94(3), 859–907.

Sasselli, V., Pachnis, V., & Burns, A. J. (2012). The enteric nervous system. Developmental Biology, 366(1), 64–73.

Sassi, P. L., Borghi, C. E., & Bozinovic, F. (2007). Spatial and Seasonal Plasticity in Digestive Morphology of Cavies ( Microcavia australis ) Inhabiting Habitats with Different Plant Qualities. Journal of Mammalogy, 88(1), 165–172.

Spencer, N. J., & Hu, H. (2020). Enteric nervous system: sensory transduction, neural circuits and gastrointestinal motility. Nature Reviews Gastroenterology & Hepatology, 17(6), 338–351.

Steinhoff-Wagner, J., Zitnan, R., Schönhusen, U., Pfannkuche, H., Hudakova, M., et al. (2014). Diet effects on glucose absorption in the small intestine of neonatal calves: Importance of intestinal mucosal growth, lactase activity, and glucose transporters. Journal of Dairy Science, 97(10), 6358–6369.

Addis, T., Poo, L. J., & Lew, W. (1936). The quantities of protein lost by the various organs and tissues of the body during a fast. J. Biol. Chem.,115, 111-116.

Wang, J., Ding, G., & Wang, Q. (2013). Interstitial cells of Cajal mediate excitatory sympathetic neurotransmission in guinea pig prostate. Cell and Tissue Research, 352(3), 479–486.

Ward, S. M., McLaren, G. J., & Sanders, K. M. (2006). Interstitial cells of Cajal in the deep muscular plexus mediate enteric motor neurotransmission in the mouse small intestine. The Journal of Physiology, 573(1), 147–159.

Watanabe, H., Fujisawa, T., & Holstein, T. W. (2009). Cnidarians and the evolutionary origin of the nervous system. Development, Growth & Differentiation, 51(3), 167–183.

Wood, J. (1973). Electrical discharge of single enteric neurons of guinea pig small intestine. American Journal of Physiology-Legacy Content, 225(5), 1107–1113.

Wood, J. D., & Mayer, C. J. (1978). Intracellular study of electrical activity of Auerbach's plexus in guinea-pig small intestine. Pflügers Archiv European Journal of Physiology, 374(3), 265–275.

Young, H. M., Jones, B. R., & McKeown, S. J. (2002). The Projections of Early Enteric Neurons Are Influenced by the Direction of Neural Crest Cell Migration. The Journal of Neuroscience, 22(14), 6005–6018.

Gębczyńska, Z., Gębczyński, M. (1971). Length and weight of the alimentary tract of the root vole. Białowieża, 16(22), 359–369.

Zhao, X., Jørgensen, H., & Eggum, B. O. (1995). The influence of dietary fibre on body composition, visceral organ weight, digestibility and energy balance in rats housed in different thermal environments. British Journal of Nutrition, 73(5), 687–699.

Zhao, Z.-J., Chi, Q.-S., Liu, Q.-S., Zheng, W.-H., Liu, J.-S., & Wang, D.-H. (2014). The Shift of Thermoneutral Zone in Striped Hamster Acclimated to Different Temperatures. PLoS ONE, 9(1), e84396.


How to Cite
Abreu, G. L. M., Loureiro, A. C. C., Soares, P. M., Felipe, S. M. S., Freitas, R. M., Alves, J. O., Santos, L. H. P., & Ceccatto, V. M. (2022). Composition and Adaptation of the Enteric Neural System in Laboratory Rodents: A Cellular Overview. European Journal of Biology and Biotechnology, 3(3), 1–8.