Effect of Krill Oil Supplementation and Stocking Density on Growth Performance, Proximate Composition, and Organo-somatic Indices of Cyprinus carpio

##plugins.themes.bootstrap3.article.main##

  •   Lăcrămioara (Grădinariu) Năstac

  •   Mirela Crețu

  •   Lorena Dediu

  •   Angelica Ionelia Docan

  •   Cristian Rîmniceanu

  •   Camelia Vizireanu

Abstract


This study was conducted to investigate the effects of krill oil supplementation on growth performance, proximate composition and organo-somatic indices of Cyprinus carpio, reared in a recirculating aquaculture system, at different stocking densities. Four experimental diets were formulated: LD - low density (15 fish/rearing unit- 3.5 kg/m3), where fish were fed with commercial feed, HD - high density (35 fish/rearing unit-8 kg/m3 fed with commercial feed), LD-KO - low density, where fish were fed with commercial feed supplemented with 5 g/kg feed krill oil, and HD-KO- high density, were fish were fed with commercial feed supplemented with 5 g/kg feed krill oil. After 60-days of rearing, final fish weight and individual weight gain was significantly higher (P˂0.05) in fish stocked in lower density, with better values in LD-KO groups. Also, the best values of FCR, SGR and PER were obtained in LD-KO groups. Regarding the proximate composition of meat, no significant differences (P˃0.05) were registered between the experimental variants. The organo-somatic indices revealed no significant differences (P˃0.05) in the cardiosomatic index, while hepatosomatic, splenosomatic, and visceral index differed significantly (P˂0.05) between the experimental variants. Accordingly, we can conclude that supplementation of carp diet with 5 g/kg feed krill oil can improve growth performance, without any modification at proximate composition of meat.



Keywords: Aquaculture krill oil, growth performance, meat composition

References

AOAC Official method 991.36; March (1997). Fat (Crude) In Meat & Meat products Solvent Extraction (Submersion) Method First Action 1991 Final Action 1996.

Aragão, C. Gonçalves, A. T., Costas, B., Azeredo, R., Xavier, M. J., Engrola, S. (2022). Alternative Proteins for Fish Diets: Implications beyond Growth. Animal, 1-41.

Castro, O., Burri, L., Nunes, A. (2017). Astaxanthin krill oil enhances the growth performance and fatty acid composition of the Pacific whiteleg shrimp, Litopenaeus vannamei, reared under hypersaline conditions. Aquacult Nutr. ,1-11.

Betancor, M. B., Nordrum, S., Atalah, E. Caballero, M. J., Benítez-Santana, T., Roo, J., et al. (2012). Potential of three new krill products for seabream larval production. Aquaculture Research, 43(3), 395-406.

Castro, A., Montes, M., Orihuela, M. L., Linares, J., Cota, N., Carrera, L., et al. (2019). Effect of stocking density on growth and survival of fine flounder Paralichthys adspersus (Steindachner, 1867) larvae. Latin american journal of aquatic research, 47(1), 1-8.

Choi, J., Lee, K. W., Han, G.S., Byun, S., Lim, H. J., Kim, H. S. (2020). Dietary inclusion effect of krill meal and various fish meal sources on growth performance, feed utilization, and plasma chemistry of grower walleye pollock (Gadus chalcogrammus, Pallas 1811). Aquac. Rep., 17, 1-17.

Christiansen, R., L., Torrissesn, O. J. (1994). Effect of astaxanthin and Vitamin A on growth and survival during first feeding of Atlantic salmon Salmo salar L. Aquaculture and Fisheries Management, 25, 903-914.

Costas, B., Aragao, C., Juan Miguel Mancera, J. M., Dinis, M. T., Conceicao, L. C. (2008). High stocking density induces crowding stress and affects amino acid metabolism in Senegalese sole. Aquaculture Research, 2008, 39, 1-9.

Cordeli, A. N., Oprea, L., Cretu, M., Mocanu, M. (2021). The influence of stocking densities on the growth performance of common carp (Cyprinus carpio, Linne 1758) reared in a recirculating aquaculture system. Scientific Papers. Series D. Animal Science, LXIV(1), 509-516.

Coroian C. O., Miresan V., Cocan D.I., Vatu R. D., Raducu C. M., Coroian A., (2015). Growth performance of common carp (Cyprinus carpio L.) fingerlings fed with various protein levels. AACL Bioflux 8(6), 1038-1047.

Dediu, L., Docan, A., Grecu, I.R., Crețu. M., Ibănescu, D.C., Râmniceanu, C., Cristea, V. (2021). The combined effects of stocking density, feeding regime, and initial size on growth performance of rainbow trout fingerlings. Scientific Papers. Series D. Animal Science, LXIV(1), 517-522.

Dediu, L., Docan, A., Cretu, M., Grecu, I. R., Mogodan, A. Maereanu, M., et al. (2021). Effects of Stocking Density on Growth Performance and Stress Responses of Bester and Bester♀×Beluga♂Juveniles in Recirculating Aquaculture Systems. Animals, 11, 2292.

Dekić, R., Savić, N., Manojlović, M., Golubm D., Pavličević, J. (2016). Condition factor and organosomatic indices of rainbow trout (Onchorhynchus mykiss, Wal.) from different brood stock. Biotechnology in Animal Husbandry, 32 (2), 229-237.

Dong-Kyu, K., Kyoung-Duck, K., Joo-Young, S. and Sang-Min, L. (2012). Effects of Dietary Lipid Source and Level on Growth Performance, Blood Parameters and Flesh Quality of Sub-adult Olive Flounder (Paralichthys olivaceus), Asian Australasian Journal of Animal Sciences, 25(6), 869-79,

El-Sayed, A. F., Dickson M. W., El Naggar, G. O. (2015). Value chain analysis of the aquaculture feed sector in Egypt. Aquaculture, 437, 92-101.

Enache, I. Cristea, V., Ionescu, T., Placintă. S. (2011). The influence of stocking density on the growth of common carp, Cyprinus carpio, in a reciculating aquaculture system. AACL Bioflux, 4(2), 146-153.

Espinoza-Ramos, L. A., Quispe-Mayta, J. M., Chili-Layme, V., Nande, M. (2022). Effect of Stocking Density on Growth, Feed Efficiency, and Survival in Peruvian Grunt Anisotremus scapularis (Tschudi, 1846): From Fingerlings to Juvenile. Aquac. J., 2, 13–22.

Everson, I. (2008). Krill: Biology, Ecology and Fisheries. Hoboken, NJ: John Wiley & Sons.

Food and Agriculture Organization of the United Nations (FAO). (2020). The State of World Fisheries and Aquaculture 2020. Sustainability in action. Rome.

Fry, J. P., Mailloux, N. A., Love, D. C., Milli, M. C., Cao, L. (2018). Feed conversion efficiency in aquaculture: Do we measure it correctly? Environ. Res. Lett. 13, 079502.

Fujita, T., Satake, M., Watanabe, T., Kitajima, C., Miki, W., Yamaguchi, K. et al. (1983). Pigmentation of cultured red sea bream with astaxanthin diester purified from krill oil. Bull. Jpn. Sot. Sci. Fish., 49, 1855-1861.

Gaber, M. A. (2005). The effect of different levels of krill meal supplementation of soybean-based diets on feed intake, digestibility, and chemical composition of juvenile Nile tilapia Oreochromis niloticus L, J. World Aquac. Soc., 36, 346-353.

Global Seafood Aliance (2022, September 1). https://www.globalseafood.org/advocate/new-evidence-suggests-antarctic-krill-meal-is-a-promising-and-responsibly-harvested-aquafeed-alternative/

Gokcek, C. K. & Akyurt, I. (2007). The effect of stocking density on yield, growth, and feed efficiency of Himri Barbel (Barbus luteus) nursed in cages. Israeli J. Aquacul., 59, 99-103.

Hansen, J. Ø., Shearer, K. D., Øverland, M., Penn, M. H., Krogdahl, A., Mydland., L. T., Storebakken, T. (2011). Replacement of LT fish meal with a mixture of partially deshelled krill meal and pea protein concentrates in diets for Atlantic salmon (Salmo salar),” Aquaculture, 315(3-4), 275-282.

Hayat, M., Nugroho, R. A., Aryani, R. (2018). Influence of different stocking density on the growth, feed efficiency, and survival of Majalaya common carp (Cyprinus carpio Linnaeus 1758), F1000 Research, 7, 1-9,

Ibrahim, A., Shimizu, C., Kono, M. (1984). Pigmentation of cultured red sea bream, Chrysophrys major, using astaxanthin from Antartic krill, Euphausia superba, and a mysid, Neomysis sp. Aquaculture, 38, 45-57.

Jamu, D. M., & Ayinla, O. A. (2013). Potential for the development of aquaculture in Africa. NAGA 26:9-13. Journal of Agricultural Research. 5 (22), 3096-3101.

Kiranpreet, K., Trond, M. K., Benitez-Santana, T., Burri, L. (2022). Effects of Antarctic Krill Products on Feed Intake, Growth Performance, Fillet Quality, and Health in Salmonids. Aquaculture Nutrition, 1-14.

Krogdahl, A., Ahlstrom, O., Burri. L., Nordrum. S., Dolan, L., Bakke, A. M., et al. (2014). Antarctic krill meal as an alternative protein source in pet foods evaluated in mink (Neovison vison). II. Growth. Dovepress, 43-56.

Kousoulaki, K., Rønnestad, I., Olsen, H. J., Rathore, R., Campbell, P., Nordrum, S., et al. (2013). Krill hydrolysate free amino acids responsible for feed intake stimulation in Atlantic salmon (Salmo salar), Aquaculture Nutrition, 19, 47-61,

Leatherland, J. F., & Cho, C. Y. (1985). Effect of rearing density on thyroid and interrenal gland activity and plasma and hepatic metabolite levels in rainbow trout, Salmo gairdneri Richardson. J. Fish Biol., 27, 583-592.

Mocanu, M., Cristea, V., Dediu, L., Dicu, D., Docan, A., Ionescu, T., (2011). The influence of different stocking densities on growth performances of Oncorhynchus mykiss (Walbaum, 1792) in a recirculating aquaculture system, Volume of Scientific Papers - Animal Science Series, 56 (16), 326-331.

Montero, D., Izquierdo, M. S., Tort, L., Robaina, L., Vergara, J. M. (1999). High stocking density produces crowding stress altering some physiological and biochemical parameters in gilthead seabream, Sparus aurata, juveniles. Fish Physiol. Biochem. 20, 53-60.

Morimoto Kofuji, P. Y., Hosokawa, H., Masumoto, T. (2006). Effects of dietary supplementation with feeding stimulants on yellowtail Seriola quinqueradiata (Temminck & Schlegel; Carangidae) protein digestion at low water temperatures, Aquacult. Res., 37, 366-373.

Mørkøre, T., Moreno, H. M., Borderías, J., Larsson, T., Hellberg, H., Hatlen, B., et al. (2020). Dietary inclusion of Antarctic krill meal during the finishing feed period improves health and fillet quality of Atlantic salmon (Salmo salar L.). British Journal of Nutrition, 124, 418-431.

Ntanzi, R., Bwanika, G., Eriku, G. (2014). The Effects of Stocking Density on the Growth and Survival of Nile Tilapia (Oreochromis niloticus) Fry at Son Fish Farm, Uganda. J. Aquac. Res. Development, 5, 2.

Nunes, A. J. P., Soares, A. N., Sabry-Neto, H., Burri, L. (2020). Effect of dietary graded levels of astaxanthin krill oil and high protein krill meal on the growth performance and stress resistance of postlarval Litopenaeus vannamei under hyper-intensive nursery culture. Aquacult Nutr. 1-15.

Ravichandran, S., Kumaravel, K., Florence, E. P. (2011). Nutritive composition of some edible fin fishes. International Journal of Zoological Research, 7(3), 241-251.

Saleh, R., Burri, L., Benitez-Santana, T., Turkmen, S., Castro, P., Izquierdo, M. (2018). Dietary krill meal inclusion contributes to better growth performance of gilthead seabream juveniles. Aquaculture Research, 49(10), 3289-3295.

Sankian, Z., Khosravi, S., Kim, Y. O., Sang-Min, L. (2019). Total replacement of dietary fish oil with alternative lipid sources in a practical diet for mandarin fish, Siniperca scherzeri, juveniles. Fish Aquatic Sci., 22(8), 1-9.

Storebakken T. (1988). Krill as a potential feed source for salmonids,” Aquaculture, 70(3), 193-205.

Sargent, J. R., Tocher, D. R., Bell, J. G. (2002). The lipids. In: Halver, J.E. & Hardy, R. W. (Eds.). Fish nutrition. Elsevier Science, New York, 181-257.

Tavares-Dias, M., Martins, M. L., Moraes, F. R. (2000). Relacao hepatossomatica e esplenossomatica em peixes teleosteos de cultivo intenso. Rev Bras Zool., 171, 273-281.

Trenzado, C. E., Morales, A. E., De la Higuera M. (2006). Physiological effects of crowding in rainbow trout, Oncorhynchus mykiss, selected for low and high-stress responsiveness. Aquaculture 258, 583-593.

Torrissen, O. J. P. (1989). Pigmentation of salmonids: interactions of astaxanthin and canthxanthin on pigment deposition in rainbow trout. Aquaculture, 79, 363-374.

Xiuling, L., Liu, B., Liu, B., Zhang, N., Guo, L., Zhu, K., et al. (2019). Growth Performance, Lipid Deposition and Serum Biochemistry in Golden Pompano Trachinotus Ovatus (Linnaeus, 1758) Fed Diets with Various Fish Oil Substitutes. The Israeli Journal of Aquaculture - Bamidgeh, 1-11.

Yoshitomi, B., Aoki, M., Oshima, S. I., and. Hata, K. (2006). Evaluation of krill (Euphausia superba) meal as a partial replacement for fish meal in rainbow trout (Oncorhynchus mykiss) diets. Aquaculture, 261(1), 440–446.

##plugins.themes.bootstrap3.article.details##

How to Cite
Năstac, L. (Grădinariu), Crețu, M., Dediu, L., Docan, A. I., Rîmniceanu, C., & Vizireanu, C. (2023). Effect of Krill Oil Supplementation and Stocking Density on Growth Performance, Proximate Composition, and Organo-somatic Indices of Cyprinus carpio. European Journal of Biology and Biotechnology, 4(1), 1–6. https://doi.org/10.24018/ejbio.2023.4.1.426