##plugins.themes.bootstrap3.article.main##

In this review, we report on the different plant growth regulators (PGRs) affecting the callus induction, callus-mediated regeneration, organogenesis, somatic embryogenesis from different explants and micropropagation through shoot tip and nodal cultures in Turkey Berry (Solanum torvumSW). The fruits of this plant guard against liver and kidney damage, stop certain cancers, and regulate blood sugar levels. They benefit digestion, the management of gout and menstruation, the treatment of anaemia and diabetes, the prevention of intestinal worms, cardiovascular disorders, and strokes. The protocol developed for the induction of callus can be utilized to isolate pharmaceutically important secondary metabolites in S. torvum, and the regeneration protocols optimized in this study can be used for genetic transformation and conservation of S. torvum, not only as a medicinal plant but also a model system.

References

  1. Alim, M.A., Biswas, B.K., Hasanuzzaman, M., Baka, P., & Roy, U.K. (2014). Callus induction of brinjal by genotype and growth regulators. Journal of Experimental Biosciences, 5, 35-42.
     Google Scholar
  2. Ammirato, P.V. (1983). The regulation of somatic embryo development in plant cell cultures: suspension culture techniques and hormone requirements. Nature Biotechnology, 1, 68-73. https://doi.org/10.1038/nbt0383 -68.
     Google Scholar
  3. Arthan, D., Svasti, J., Kittakoop, P., Pittayakhachonwut, D., Tanticharoen, M., &Thebtaranonth, Y. (2002). Antiviral isoflavonoid sulfate and steroidal glycosides from the fruits of Solanum torvum.Phytochemistry, 59(4), 459-63. https://doi:10.1016/s0031-9422 (01) 00417-4.
     Google Scholar
  4. Atta, A.H., &Alkofahi, A. (1998). Anti-nociceptive and anti-inflammatory effects of some Jordanian medicinal plant extracts. Journal of Ethnopharmacooglogy, 60(2), 117-24. https://doi:10.1016/s0378-8741 (97)00137-2.
     Google Scholar
  5. Bari, M..A., Islam, W., Khan, A.R., & Mandal, A. (2010). Antibacterial and antifungal activity of Solanum torvum(Solanaceae). International Journal of Agriculture and Biology, 12, 386-390.
     Google Scholar
  6. Bhat, S.V., Jadhav, A.S., Pawar, B.D., Kale, A.A., Chimote, V.P., & Pawar, S.V. (2013). In vitro shoot organogenesis and plantlet regeneration in brinjal (Solanum melongena L). The Bioscan, 8, 821-824.
     Google Scholar
  7. Bhojwani, S.S., &Razdan, M.K. (1996). Plant tissue culture: Theory and practice, Elsevier, Amsterdam. 1, 125-166.
     Google Scholar
  8. Chah, K.F., Muko, K.N., &Oboegbulem, S.I. (2000). Antimicrobial activity of methanolic extract of Solanum torvumfruit. Fitoterapia, 71, 187-189.https://doi:10.1016/s0367-326x (99) 00139-2.
     Google Scholar
  9. Chandan Kumar Singh, Nizamuddin Ansari, Md., Nidhi Kumari, & Naseem, Md. (2018). Response of different growth harmones of leaf culture of Solanum torvum. Journal of Emerging Technologies and Innovative Research, 5, 1024-1042.
     Google Scholar
  10. Collonnier, C., Fock, I., Kashyap, V., Rotino, G.L., Daunay, M.C., Lian, Y., et al., (2001). Applications of biotechnology in egg plant. Plant Cell Tissue and Organ Culture, 65, 91-107. https://doi:10.1023/A: 1010674425536.
     Google Scholar
  11. Cowan, M.M. (1999). Plant products as antimicrobial agents. Clinical Microbiology Reviews, 12(4), 564-582. http://doi: 10.1128/CMR.12.4.564.
     Google Scholar
  12. Das, T.O., & Mitra, G.C. (1990). Micropropagation of Eucalyptus tereticornis Smith. Plant Cell Tissue and Organ Culture, 22, 95–103. https://doi.org/10.1007/BF00043684
     Google Scholar
  13. Ewais, E.A., Desouky, S.A., &Eshazly, E.H. (2015). Studies on callus induction, phytochemical constituents and antimicrobial activity of Solanum nigrum L. (Solanaceae). Natural Sciences, 13, 133-138.
     Google Scholar
  14. Friedman, M., Lee, K.R., Kim, H.J., Lee, I.S., &Kozukue, N. (2005). Anticarcinogenic effects of glycoalkaloids from potatoes against human cervical, liver, lymphoma, and stomach cancer cells. Journal of Agricultural Food Chemistry, 53, 6162-6169. http://doi:10.1021/jf050620p.
     Google Scholar
  15. Fui, L.H. (1992). Knowledge and use of forest product as traditional medicine: the case of the forest-dwelling communities. Proceedings of the Conference on Medicinal Products from Tropical Rain Forest. Forest Research Institute of Malaysia. Kuala Lumpur. pp. 385-400.
     Google Scholar
  16. Geetha, S., & Shetty, S.A. (2000). In vitro propagation of Vanilla planifolia, a tropical orchid. Current Science, 79, 886–889.
     Google Scholar
  17. Ghan Singh, M., Rajinikanth, M., & Rama Swamy, N. (2021a). Effect of plant growth regulators on somatic embryogenesis and plantlet development of turkey berry (Solanum torvumSW). European Journal of Medicinal Plants. 32(7): 1-8.
     Google Scholar
  18. Ghan Singh, M., Rajinikanth, M., & Rama Swamy, N. (2021b). High efficiency direct in vitro regeneration from different explants of medicinal plant turkey berry (Solanum torvumSw). International Research Journal of Plant Science, 12(5), 1-8. http://dx.doi.org/10.14303/irjps.2021.31.
     Google Scholar
  19. Ghan Singh, M., Rajinikanth, M., & Rama Swamy, N. (2022a). High frequency callus mediated plantlet regeneration from different explants of ethnomedicinal plant turkey berry (Solanum torvumSw). Journal of Scientific Research, 66(1), 121-128.
     Google Scholar
  20. Ghan Singh, M., Rajinikanth, M.,&Rama Swamy, N.(2022b). Micropropagation of an ethnomedicinal plant Solanum torvum Swartz. Vegetos. https://doi.org/10.1007/ s42535-022-00502-3
     Google Scholar
  21. Ghan Singh, M., Rajinikanth, M., & Rama Swamy, N. (2023). Effect of plant growth regulators on callus induction in Solanum torvumSW-a medicinal plant. Vegetos(Accepted).
     Google Scholar
  22. Gilbert, P., & Mc Bain, A.J. (2003). Potential impact of increased use of biocides in consumer products on prevalence of antibiotic resistance. Clinical Microbiology Reviews, 16, 189-208. https://doi:10.1128/CMR.16.2.189-208.2003.
     Google Scholar
  23. Gisbert, C., Prothens, J., &Nuez, F. (2006). Efficient regeneration in two potential new crops for subtropical climates, the scarlet (Solanum aethiopicum) and gboma (S. macrocarpon) eggplants. New Zeland Journal of Crop and Horticultural Science, 34, 55-62.https://doi.org/10.1080/01140671.2006.9514388
     Google Scholar
  24. Govindarajan, P., &Chinnachamy, C. (2014). Phytochemical and therapeutic evaluation of leaf and in vitro derived callus and shoot of Solanum trilobatum. Pakistan Journal of Pharmaceutical Science, 27, 2101-2107. https://pubmed.ncbi.nlm.nih.gov/25410080
     Google Scholar
  25. Hajare, S.W., Suresh, C., Tandan, S.K., Sarma, J., Lal, J., &Telang, A.G. (2000). Analgesic and antipyretic activities of Dalbergia sissoo leaves. Indian Journal of Pharmacology, 32, 357-360.
     Google Scholar
  26. Huda, A.K.M.N., Bari, M.A., Rahman, M., &Nahar, N. (2007). Somatic embryogenesis of two varieties of eggplant (Solanum melongena L.). Research Journal of Botany, 2,195-201.
     Google Scholar
  27. Kanna, S.V., &Jayabalan, N. (2010). Influence of n6-(2-isopentenyl) adenine on in vitro shoot proliferation in Solanum melongena L. International Journal of Academic Research and Development, 2(2), 98.
     Google Scholar
  28. Kantharajah, A.S., &Golegaonkar, P.G. (2004). Somatic embryogenesis in eggplant.Scientia Horticulturae, 99, 107-117. https://doi:10.1016/S0304-4238(03) 00090-6.
     Google Scholar
  29. Kaur, G., Puja, R., & Anju, P. (2020). In vitro plant regeneration studies in brinjal (Solanum melongena L). Journal of Krishi Vigyan, 8(2), 166-173 https://doi: 10.5958/2349-4433.2020.00040.9.
     Google Scholar
  30. Kaur, M., Dhatt, A.S., Sandhu, J.S., &Gosal, S.S. (2011). In vitro plant regeneration in brinjal from cultured seedling explants. Indian Journal of Horticulture, 68, 61-65.
     Google Scholar
  31. Kaur, M., Dhatt, A.S., Sandhu, J.S., Sidhu, A.S., &Gosal, S.S. (2013). Effect of media composition and explant type on the regeneration of eggplant (Solanum melongena L.). African Journal of Biotechnology, 12, 860-866. https://doi:10.5897/AJB12.554.
     Google Scholar
  32. Khartini, A.W., DayangFredalina, B., Kaswandi, A., Hing, H.L., Oon, K.W., & Sit, N.W. (2003). Antimicrobial and cytotoxic activities of Holothuria sp. and B. marmorata vitiensis. Malaysian Journal ofBiochemistry and Molecular Biology,8, 49-53. https://doi: 10.5812/jjm.8708.
     Google Scholar
  33. Kumlay, A.M., &Ercisl, S. (2015). Callus induction, shoot proliferation and root regeneration of potato (Solanum tuberosum L.) stem node and leaf explants under long-day conditions. Biotechnology and Biotechnological Equipment, 29(6), 1075-1084. https://doi.org/10.1080/13102818.2015.1077685.
     Google Scholar
  34. Lee, K.R., Kozukue, N., Han, J.S., Park, J.H., Chang, E.Y., Baek, E.J., et al., (2004). Glycoalkaloids and metabolites inhibit the growth of human colon (HT29) and liver (HepG2) cancer cells. Journal of Agricultural and Food Chemistry.52,2832-2839. https:// doi:10.1021/jf030526d.
     Google Scholar
  35. Lim, D., Sanschagrin, F., Passmore, L., Castro, L.D., Levesque, R.C., &Strynadka, N.C.J. (2001). Insights into the molecular basis for the carbenicillinase activity of PSE-4-lactamase from crystallographic and kinetic studies. Biochemistry,40, 395-402. https://doi:10.1021/bi001653v.
     Google Scholar
  36. Mackeen, M.M., Ali, A.M., Abdullah, M.A., Nasir, R.M., Mat, N.B., Razak, A.R., et al.(1997). Antinematodal activity of some Malaysian plant extracts against the pine wood nematode Bursaphelencusxylophilus. Journal of Pesticide Science, 51, 165-170.
     Google Scholar
  37. Magioli, C., Rocha, A.P.M., de Oliveira, D.E., & Mansur, E. (1998). Efficient shoot organogenesis of eggplant (Solanum melongena L.) induced by thidiazuron. Plant Cell Reports, 17, 661-663. https://doi.org/10.1007/s002990050461
     Google Scholar
  38. Mahadev, M.D., Chandra, S.P., & Naidu, C.V. (2014). Efficient protocolfor in vitrocallus indirect plant regeneration of Solanum viarum(Dunal)-An important anticancer medicinal plant. International Journal of Medicinal and Aromatic Plants, 4, 117-123.
     Google Scholar
  39. Mahmood, U., Argawal, P.K., & Thakur, R.S. (1985). Torvonin-A, a spirostane saponin from Solanum torvumleaves. Phytochemistry, 24, 2456-2457. https://doi.org/10.1016/S0031-9422(00)83069-1.
     Google Scholar
  40. Maiti, P.C., Mookherjea, S., Matew, R., & Dan, S.S. (1979). Studies on Indian Solanum I. alkaloid content and detection of solasodine. Economic Botany, 33, 75-77. https://doi.org/10.1007/BF02858219
     Google Scholar
  41. Maria Elena, N.G., Jose Arthur Da, S.E., Souccar, C., & Antonio, J.L. (1997). Analgesic and anti-inflammatory activities of the aqueous extract of Plantango major L. International Journal of Pharmacognosy,35, 99-104 https://doi.org/10.1076/ phbi.35.2.99.13288
     Google Scholar
  42. Mir, K.A., Dhatt, A.S., Sandhu, J.S., &Gosal, S.S. (2008). Genotype, explant and culture medium effects on somatic embryogenesis in eggplant (Solanum melongena L.). Horticulture, Environment and Biotechnology, 49, 182-187.
     Google Scholar
  43. Mir, K.A., Dhatt, A.S., Sandhu, J.S., & Sidhu, A.S. (2011). Effect of genotype, explant and culture medium on organogenesis in brinjal. Indian Journal of Horticulture, 68(3), 332-335.
     Google Scholar
  44. Mukherjee, S.K., Rathnasbapathi, B., &Guptya, N. (1991). Low sugar and osmotic requirements for shoot regeneration from leaf pieces of Solanum melongena L. Plant Cell Tissue and Organ Culture, 25, 12-16. https://doi.org/10.1007/BF00033906
     Google Scholar
  45. Mythirayee, C., Krishnamurty, V., &Madhavakrishna, W. (1975). Polyphenols of Solanum torvum. Indian Academy of Science. Current Science, 44, 461-463.
     Google Scholar
  46. Narula, A. Sanjeev Kumar., Bansal, K.C., & Srivastav. P.S. (2004). Biotechnological approaches towards improvement of medicinal plants In: Plant Biotechnology and Molecular Markers. https:// doi.10.1007/1-4020-3213-7_6.
     Google Scholar
  47. Oceania, C., Doni, T., Tikendra, L., &Nongdam, P. (2015). Establishment of efficient in vitro culture and plantlet generation of tomato (Lycopersicon esculentum Mill.) and development of synthetic seeds. Journal of Plant Science, 10, 15-24. https://doi.10.3923/jps.2015.15.24.
     Google Scholar
  48. Papry, M., Ahsan, S.M., Shahriyar, S., Sathi, M.A., Howlader, P., Robbani, M., et al.(2016). In vitro regeneration protocol development via callus formation from leaf explants of tomato (Solanum lycopersicon Mill.). Tropical Plant Research, 3(1), 162-171.
     Google Scholar
  49. Perrone, D., Iannamico, V., &Rotino, G.L. (1992). Effect of gelling agents and activated charcoal on Solanum melongena plant regeneration. Capsicum Newsletter, 11, 43-44.
     Google Scholar
  50. Picoli, E.A.T., Otoni, W.C., Cecon, P.R., &Fari, M. (2000). Influence of antibiotics on NAA induced somatic embryogenesis in eggplant (Solanum melongena L. cv. Embu). International Journal of Horticultural Science, 6, 88-95.
     Google Scholar
  51. Praveen, M., & Rama Swamy, N. (2011). Effect of genotype, explant source and medium on In vitro regeneration of tomato. International Journal of Genetics and Molecular Biology, 3(3), 10-16. https://doi.org/10.5897/ijgmb.9000019
     Google Scholar
  52. Rahman, M.A., Rashid, M.A., Salam, M.A., Masud, M.A.T., Masum, A.S.M.H., & Hossain, M.M. (2002). Performance of some grafted eggplant genotypes on wild Solanum root stocks against root-knot nematode. Journal of Biological Science, 2, 446-448. https://doi:10.3923/jbs.2002.446.448.
     Google Scholar
  53. Rama Swamy, N., Ugandhar, T., Praveen, M., Lakshman, A., Rambabu, M., &Venkataiah, P. (2004). In vitro propagation of medicinally important Solanum surattense. Phytomorphology, 54, 281-289.
     Google Scholar
  54. Rama Swamy, N., Ugandhar, T., Praveen, M., Venkataiah, P., Rambabu, M., Upender, M., et al.(2005). Somatic embryogenesis and plantlet regeneration from cotyledon and leaf explants of Solanum surattense. Indian Journal of Biotechnology, 4, 414-418.
     Google Scholar
  55. Rao, A.V., Venu, Ch., &Sadanandam, A. (1997). Selection of streptomycin and kanamycin resistance using Nitrosomethylurea and Agrobacterium in Solanum sisymbrifolium. Indian Journal of Experimental Biology, 35, 188-192.
     Google Scholar
  56. Ripperger, H. (1995). Steroid alkaloid glycosides from Solanum robustum. Phytochemistry, 39, 1475-1477. https://doi.org/10.1016/0031-9422(95)00150-6
     Google Scholar
  57. Robinson, J.P., & Saranya, S. (2013). An improved method for the In vitro propagation of Solanum melongena L. International Journal of Current Microbiology and Applied Science, 2(6), 299-306.
     Google Scholar
  58. Roy, S.K., Islam, M.S., Sen, J., &Hadiuzzaman, S. (1993). Propagation of flood tolerant Jack fruit (Atrocarpus heterophyllus) by in vitro culture. Acta Horticulturae, 336, 273-278. https://doi.org/10.17660/ActaHortic.1993.336.36
     Google Scholar
  59. Sarin, R. (2005). Useful metabolites from plant tissue cultures. Biotechnology,4, 79-93. httsp://doi:10.3923/biotech.2055.79.93.
     Google Scholar
  60. Sarker, R.H., Sabina, Y., & Hoque, M.I. (2006). Multiple shoot formation in eggplant (Solanum melongenaL.). Plant Tissue Culture and Biotechnology. 16, 53-61. https://doi.10.3329/ptcb.v16i1.1106
     Google Scholar
  61. Shahzad, A., Hasan, H., & Siddiqui, A.S. (1999). Callus induction and regeneration in Solanum nigrum L. in vitro. Phytomorphology, 49, 215-220.
     Google Scholar
  62. Sharada, D., Sai Krishna, P., & Rama Swamy, N. (2019). Plant regeneration via somatic embryogenesis in Solanum nigrum L. (Black nightshade) (Solanaceae). Biotechnology Journal International, 23(1), 1-9.
     Google Scholar
  63. Sharma, A.K., Mohanty, A., Singh, Y., & Tyagi, A.K. (1999). Transgenic plants for the production of edible vaccines and antibodies for immunotherapy. Current Science, 77, 524-529.
     Google Scholar
  64. Sidhu, M., Dhatt, A., & Sidhu, G.S. (2014). Plant regeneration in eggplant (Solanum melongena L.): A review. African Journal of Biotechnology, 13, 714-722. https://doi.10.5897/AJBX2013.13521.
     Google Scholar
  65. Silva, T.M.S., Batista, M.M., Camara, C.A., & Agra, M.F. (2005). Molluscicidal activity of some Brazilian Solanum spp. (Solanaceae) against Biomphalaria glabrata. Annals of Tropical Medicine and Parasitology, 99, 419-425. https://doi.10.1179/136485905X36208
     Google Scholar
  66. Sinnot, E.W. (1960). Plant morphogenesis, New York, McGraw-Hill.
     Google Scholar
  67. Solouki, M., Hoshyar, H., Ramroudi, M., &Tavassoli, A. (2011). Comparison and evaluation of steroid alkaloid solasodine on in vivo and in vitro cultures of Solanum surattenseBurm. L. African Journal ofMicrobiology Research, 5, 3810-3814. https://doi.org/10.5897/AJMR11.715
     Google Scholar
  68. Sreenu, P., Gulabkhan, R., Phanikanth, J., Prasad, B., Rajender, K., & Christopher, T. (2019). High frequency in vitro plantlet regeneration in Solanum trilobatum L. an important ethnomedicinal plant and confirmation of genetic fidelity of R1 plantlets by using ISSR and RAPD markers. Vegetos, 32, 508-520. http://doi.10.1007/s42535-019-00069-6
     Google Scholar
  69. Sudershan, C., Aboel, M.N., & Hussain, J. (2000). In vitro propagation of Ziziphus mauritiana cultivar umran by shoot tip and nodal multiplication. Current Science, 80, 290-292.
     Google Scholar
  70. Taha, R., &Tizan, M. (2002). An in vitro production and field transfer protocol for Solanum melongena L. plants. South African Journal of Botany, 68, 447-450.https://doi.org/10.1016/S0254-6299(15)30372-0
     Google Scholar
  71. Takamura, T., Sugimura, T., & Tanaka, M. (2006). Effects of culture vessel on in vitro morphogenesis in shoot formation of Solanum melongena L. and S. integrifoliumPoir. Journal of Society of High Technology in Agriculture, 18, 110-114.
     Google Scholar
  72. Tejavathi, D.H., &Bhuvana, B. (1998). In vitro morphogenetic studies in Solanum viarumDunal. The Journal of the Swamy Botanical Club, 15, 27-30.
     Google Scholar
  73. Telesphore, B.N., Catherine, B.F., Gilbert, A., Pierre, W., Simplice, T., Albert, D.A., et al.(2008). Anti-ulcerogenic properties of the aqueous and methanol extracts from the leaves of Solanum torvumSwartz (Solanaceae) in rats. Journal of Ethnomorphology, 119, 135-140. http://doi.10.1016/j.jep.2008.06.008.
     Google Scholar
  74. Vasil, I.K.(1984). Cell culture and somatic cell genetics of plants. Vol 1: Laboratory procedures and their applications, Academic Press, Orlando, F.L.
     Google Scholar
  75. Ya-Long Qin., Xiao-Chun Shu., Wei-Bing Zhuang., Feng Peng., & Zhong Wang. (2017). High efficiency callus induction and regeneration of Solanum torvumplants, HortScience, 52(12):1755-1758. https:// 10.21273/hortsci12232-17
     Google Scholar
  76. Zayova, E., Ivanova, R.V., Kraptchev, B., &Stoeva, D. (2012). Indirect shoot organogenesis of eggplant (Solanum melongena L.). Journal of Central European Agriculture, 13(3), 446-457.https://doi.org/10.5513/JCEA01/13.3.1070
     Google Scholar
  77. Zhang, Y.H. (1999). Effects of different explants and phytohormones on organogenesis in scarlet eggplant (Solanum aethiopicum L.). Journal of Yunnan Agricultural University. 14, 279-283.
     Google Scholar
  78. Zimmerman, U. (1993). Somatic embryogenesis: A model for early development in higher plants. Journal of Plant Cell, 5, 141-143. https://doi.10.1105/tpc.5.10.1411
     Google Scholar
  79. Zou, L.J., Yang, J.T., & Wu, Q.G.(2017). A protocol for rapid and high frequency in vitro propagation of Solanum nigrum L. SainsMalaysiana, 46, 1183-1189. https://dx.dot.org/10.17576/jsm-2017-4608-03.
     Google Scholar