Characterization of Bundaberg Bee Virus 4 Genome Identified in Hawaii
##plugins.themes.bootstrap3.article.main##
To identify genetic markers of different cultivars of Stevia rebaudiana (stevia), leaf samples from twenty-three genetically unique stevia plants were subjected to RNA sequencing. Unexpectedly, transcriptome annotation revealed a ‘viral polyprotein’ contig, which was identified as the Bundaberg Bee Virus 4 (BBV4), a virus that has not been found in Hawaii before. BBV4 expression was found in twelve samples, and the expression levels ranged from 0.08-339.18 transcripts per million (TPM). A ‘BBV4-Hawaii’ consensus sequence was generated from 227,427 reads and shares 99.7% identity with the BBV4 reference sample from Australia. A phylogenetic tree estimation constructed using three viral domains placed BBV4 in a monophyletic clade with other members of Iflaviridae, supporting an Iflaviridae classification. A BBV4 intergenic region (IGR) was found to contain a ‘slippery sequence’ within a region that is predicted to contain the unique structure required for Programmed Ribosomal Shifting (PRS). A homological comparison of the BBV4 IGR to two other Picornavirales that utilize alternative translation revealed an area of overlap in the analogous regions. These results suggest that BBV4 may utilize alternative translation and that its IGR is involved in the process. This study also demonstrates the utility of repurposing large Next Generation Sequence (NGS) datasets with sufficiently deep coverage for viral genome identification, quantification, and characterization. The results herein represent the first full capture of the BBV4 genomic sequence and the second reported observation of the virus worldwide.
References
-
Atkins, J. F., Wills, N. M., Loughran, G., Wu, C. Y., Parsawar, K., Ryan, M., et al. (2007). A case for “StopGo”: reprogramming translation to augment codon meaning of GGN by promoting unconventional termination (Stop) after addition of glycine and then allowing continued translation (Go). RNA, 13(6), 803-810.
Google Scholar
1
-
Belsham, G. J., & Sonenberg, N. (1996). RNA-protein interactions in regulation of picornavirus RNA translation. Microbiological Reviews, 60(3), 499-511.
Google Scholar
2
-
Brierley, I., Digard, P., & Inglis, S. C. (1989). Characterization of an efficient coronavirus ribosomal frameshifting signal: requirement for an RNA pseudoknot. Cell, 57(4), 537-547.
Google Scholar
3
-
Bushnell, B. (2014). BBTools [Computer software]. http:sourceforge.net/projects/bbmap
Google Scholar
4
-
Chung, B. Y. W., Miller, W. A., Atkins, J. F., Firth, A. E. (2008). An overlapping essential gene in the Potyviridae. Proceedings of the National Academy of Sciences, 105(15), 5897-5902.
Google Scholar
5
-
Cortina, C. A., Aslan, C. E., Litson, S. J. (2019). Importance of Non-Native Honeybees (Apis mellifera) as Flower Visitors to the Hawaiian Tree ‘Ōhi ‘a Lehua (Metrosideros polymorpha) Across an Elevation Gradient1. Pacific Science, 73(3), 345-355.
Google Scholar
6
-
Darriba, D., Taboada, G. L., Doallo, R., Posada, D. (2012). jModelTest 2: more models, new heuristics and parallel computing. Nature Methods, 9(8), 772-772.
Google Scholar
7
-
Firth, A. E., Chung, B. Y., Fleeton, M. N., Atkins, J. F. (2008). Discovery of frameshifting in Alphavirus 6K resolves a 20-year enigma. Virology Journal, 5(1), 1-19.
Google Scholar
8
-
Götz, S., García-Gómez, J. M., Terol, J., Williams, T. D., Nagaraj, S. H., Nueda, M. J., Conesa, A., et al. (2008). High-throughput functional annotation and data mining with the Blast2GO suite. Nucleic Acids Research, 36(10), 3420-3435.
Google Scholar
9
-
Jaafar ZA, Kieft JS. (2019). Viral RNA structure-based strategies to manipulate translation. Nature Reviews Microbiology, 17(2), 110-123.
Google Scholar
10
-
Jones, P., Binns, D., Chang, H. Y., Fraser, M., Li, W., McAnulla, C., Hunter, S., et al. (2014). InterProScan 5: genome-scale protein function classification. Bioinformatics, 30(9), 1236-1240.
Google Scholar
11
-
Kerpedjiev, P., Hammer, S., Hofacker, I. L. (2015). Forna (force-directed RNA): Simple and effective online RNA secondary structure diagrams. Bioinformatics, 31(20), 3377-3379.
Google Scholar
12
-
Kolundžija, S., Cheng, D. Q., Lauro, F. M. (2022). RNA viruses in aquatic ecosystems through the lens of ecological genomics and transcriptomics. Viruses, 14(4), 702.
Google Scholar
13
-
Le Gall, O., Christian, P., Fauquet, C. M., King, A. M., Knowles, N. J., Nakashima, N., Gorbalenya, A. E., et al. (2008). Picornavirales, a proposed order of positive-sense single-stranded RNA viruses with a pseudo-T= 3 virion architecture. Archives of Virology, 153, 715-727.
Google Scholar
14
-
Loughran, G., Firth, A. E., Atkins, J. F. (2011). Ribosomal frameshifting into an overlapping gene in the 2B-encoding region of the cardiovirus genome. Proceedings of the National Academy of Sciences, 108(46), E1111-E1119.
Google Scholar
15
-
Namy, O., Moran, S. J., Stuart, D. I., Gilbert, R. J., Brierley, I. (2006). A mechanical explanation of RNA pseudoknot function in programmed ribosomal frameshifting. Nature, 441(7090), 244-247.
Google Scholar
16
-
Price, M. N., Dehal, P. S., Arkin, A. P. (2010). FastTree 2–approximately maximum-likelihood trees for large alignments. PloS One, 5(3), e9490.
Google Scholar
17
-
Lorenz, R., Bernhart, S. H., Höner zu Siederdissen, C., Tafer, H., Flamm, C., Stadler, P. F., et al. (2011). ViennaRNA Package 2.0. Algorithms for molecular biology, 6, 1-14.
Google Scholar
18
-
Roberts, J. M., Anderson, D. L., Durr, P. A. (2018). Metagenomic analysis of Varroa-free Australian honey bees (Apis mellifera) shows a diverse Picornavirales virome. Journal of General Virology, 99(6), 818-826.
Google Scholar
19
-
Roux, S., Adriaenssens, E. M., Dutilh, B. E., Koonin, E. V., Kropinski, A. M., Krupovic, M., et al. (2019). Minimum information about an uncultivated virus genome (MIUViG). Nature Biotechnology, 37(1), 29-37.
Google Scholar
20
-
Santamaria, J. (2020). Deformed wing virus (DWV) transmission across pollinators of Hawaii. [Doctoral dissertation], University of Hawai'i at Manoa.
Google Scholar
21
-
Saqib, M., Wylie, S. J., Jones, M. G. K. (2015). Serendipitous identification of a new Iflavirus‐like virus infecting tomato and its subsequent characterization. Plant Pathology, 64(3), 519-527.
Google Scholar
22
-
Valles, S. M., Bell, S., Firth, A. E. (2014). Solenopsis invicta virus 3: mapping of structural proteins, ribosomal frameshifting, and similarities to Acyrthosiphon pisum virus and Kelp fly virus. PLoS One, 9(3), e93497.
Google Scholar
23
-
Valles, S. M., Chen, Y., Firth, A. E., Guérin, D. M. A., Hashimoto, Y., Herrero, S., et al. (2017). ICTV virus taxonomy profile: Iflaviridae. The Journal of General Virology, 98(4), 527.
Google Scholar
24
-
Woo, P. C., Lau, S. K., Choi, G. K., Huang, Y., Teng, J. L., Tsoi, H. W., et al. (2012). Natural occurrence and characterization of two internal ribosome entry site elements in a novel virus, canine picodicistrovirus, in the picornavirus-like superfamily. Journal of Virology, 86(5), 2797-2808.
Google Scholar
25