##plugins.themes.bootstrap3.article.main##

Cut flower Matthiola incana were raised by local commercial cultivators in a polytunnel. The field soil beds were either left uncovered as normal or covered with polythene sheets (except a hole for plant plug space).  Average temperatures in the top 5 cm soil under cover dropped from 28 oC to 18 oC compared to its spiking up to 37 oC in uncovered counterparts. Microbiological analyses indicated that soil covering induced two log10 folds reduction of the wilt causal fungi Fusarium oxysporum and concomitantly increased one log10 fold wilt antagonistic natural soil inhabiting fungi populations. Standard dip/drench mixtures of commercial and local isolates microbiocides (bacteria) applied to M. incana plug roots improved plant health assessed by visible scores of the level of damage or wilt symptoms under soil covered treatments. Scanning electron microscopy, cultural and 16S rRNA PCR analyses revealed potent antifungal bacteria attached to the hyphal surfaces of F. oxysporum as ectosymbionts that may have implications for virulence regulation and host plants’ wilt disease control. Our microbiological data support the prospects of combining physiological and microbiological interventions upon covering the soil surface that offers the local horticulturists an evidence based sustainable means of Fusarium wilt control suppression in polytunnel crops.

References

  1. Vágány, V. 2012. Characterisation of Fusarium pathogens in the UK. PhD Thesis. School of Life Sciences. University of Warwick, UK.
     Google Scholar
  2. Belanger, R. R., 2006. Controlling disease without fungicides: a new chemical warfare. Canadian Journal of Pathology 28 (Suppl.): 233-238.
     Google Scholar
  3. Alabouvette C., Steinberg. C., 2006. The soil as a reservoir for antagonists to plant diseases. In: J. Eilenberg, Hokkanen, H. M. T., (eds.). An ecological and societal approach to biological control pp. 123–144. Dordrecht, the Netherlands Springer.
     Google Scholar
  4. Tian X., Zheng, Y., 2013. Evaluation of biological control agents for Fusarium wilt in Hiemalis begonia. Canadian Journal of Plant Pathology 35: 363-370.
     Google Scholar
  5. Tsuchiya, N. 2009. 'Chouya No. 37', a Fusarium Root Rot (Race 2)-Resistant Lettuce. Journal of Japanese Society of Horticultural Science 78: 206-10.
     Google Scholar
  6. Anon., 2012. Personal communications, College of Agriculture, Food and Rural Enterprise (CAFRE), www.cafre.ac.uk, Greenmount, Co. Antrim, Northern Ireland, and the Department of Agriculture and Rural Development (DARD) www.dardni.gov.uk.
     Google Scholar
  7. Ruiz-Roldán M.C., Garre, V., Guarro, J., Mariné, M. Roncero, M. I., 2008. Role of the White Collar 1 photoreceptor in carotenogenesis UV resistance, hydrophobicity, and virulence of Fusarium oxysporum. Eukaryotic Cell 7:1227–1230.
     Google Scholar
  8. Liu, Y., Bell–Pedersen, D., 2006. Circadian Rhythms in Neurospora crassa and other filamentous fungi. Eukaryotic Cell 5: 1184–1193.
     Google Scholar
  9. Salichos, L., Rokas, A.2010. The diversity and evolution of circadian clock proteins in fungi. Mycologia 102: 269–278.
     Google Scholar
  10. Murayama, M., Maeda, Y., Rao, J.R., Matsuda, M., Moore, P. J. A., Millar, B. C., Rooney, P. J., Loughrey, A., Goldsmith, C. E., McDowell D., Moore, J. E.. 2010. Molecular identification of airborne bacteria associated with aerial spraying of bovine slurry waste employing 16S rRNA gene PCR and gene sequencing techniques. Ecotoxicology and Environmental Safety, 73:443-447.
     Google Scholar
  11. Moore, J. E., McCollum, G., Murphy, A., Millar, B. C., Nelson, D. W. A., Goldsmith, C. E., Rooney, P. J., Loughrey, A., Rao, J. R., 2010. Description of a simple bio-imaging technique to assess inhibition/growth promoting properties of novel agents on moulds. British Journal of Biomedical Science 67: 145-146.
     Google Scholar
  12. Gardiner, D., 1987. Symptom enhancement of Fusarium wilt of Chrysanthemum by high temperatures. Plant Disease 71: 1106-1109.
     Google Scholar
  13. Castrillo, M., García-Martínez, J., Avalos. J., 2013. Light-dependent functions of the Fusarium fujikuroi cryD DASH cryptochrome in development and secondary metabolism. Applied and Environmental Microbiology 79: 2777–2788.
     Google Scholar
  14. Fuller, K. K., Ringelberg, C. S., Loros, J. J., Dunlap, J. C., 2013. The fungal pathogen Aspergillus fumigatus regulates growth, metabolism, and stress resistance in response to light. mBio 4:142-155 (doi:10.1128/mBio.00142-13).
     Google Scholar
  15. Englander, L., Browning M., Tooley, P. W., 2006. Growth and sporulation of Phytophthora ramorum in vitro in response to temperature and light. Mycologia, 98: 365–373.
     Google Scholar
  16. Kuz´niak, E., 2001. Effect of fusaric acid on reactive oxygen species and antioxidants in tomato cell cultures. Journal of Phytopathology 149: 575–582.
     Google Scholar
  17. Rodriguez-Romero, J., Hedtke, M., Kastner, C., Muller, S., Fischer, R., 2010. Fungi, hidden in soil or up in the air: Light makes a difference. Annual Review of Microbiology 64:585–610.
     Google Scholar
  18. Nelson, D. W. V. A., Beattie, K., McCollum, G., Martin, T., Sharma, H. S. S., Rao, J. R., 2014. Performance of natural antagonists and commercial microbiocides towards in vitro suppression of flower bed soil-borne Fusarium oxysporum. Advances in Microbiology 4: 151-159.
     Google Scholar
  19. Gapillout, I., Milat M. L., Blein. J. P., 1995. Effect of fusaric acid on cells from tomato cultivars resistant or susceptible to Fusarium oxysporum f. sp. lycopersici. European Journal of Plant Pathology 102: 127–132.
     Google Scholar
  20. Herrou, J., Crosson, S., 2012. Function, structure, and mechanism in bacterial photosensory LOV proteins. Nature Reviews Microbiology 9: 713–723.
     Google Scholar
  21. Lounaci, L. Guemouri-Athmani,S., Boureghdea, H., Acouak, W., Heulin,T., 2016. Suppression of crown and root rot of wheat by the rhizobacterium Paenibacillus polymyxa. Phytopathologia Mediterranea 55: 355−365.
     Google Scholar
  22. Minerdi, D., Moretti, M., Gilardi, G., Barberio, C., Gullino, M. L., Garibaldi, A., 2008. Bacterial ectosymbionts and virulence silencing in a Fusarium oxysporum strain. Environmental Microbiology 10: 1725–1741.
     Google Scholar
  23. Anon., 2016. “Manipulating Light for Horticulture”. A horticulture event held by Agriculture and Horticulture Development Board (AHDB), UK on 19 January 2016 at Stoneleigh Park, Warwickshire, UK. https://horticulture.ahdb.org.uk/event/manipulating-light-horticulture.
     Google Scholar
  24. Tisch, D and M. Schmoll. 2010. Light regulation of metabolic pathways in fungi. Applied Microbiology and Biotechnology 85: 1259-1277.
     Google Scholar
  25. Steele H., Streit, W. R., 2006. Metagenomics for the study of soil microbial communities. In: Cooper, J. E., Rao, J. R., (eds.). Molecular Approaches to Soil, Rhizosphere and Plant Microorganism Analysis, pp. 42-54. CABI www.cabi.org Oxfordshire, UK.
     Google Scholar
  26. Santhanam, R., Luu, V. T., Weinhold, A., Goldberg, J., Oh, Y., Baldwin, I. T., 2015. Native root-associated bacteria rescue a plant from a sudden-wilt disease that emerged during continuous cropping. Proceedings of the National Academy of Science (PNAS, USA) 112: 5013-5020.
     Google Scholar
  27. Minerdi, D., Bossi, S., Maffei, M. E., Gullino M. L., Garibaldi, A. 2011. Fusarium oxysporum and its bacterial consortium promote lettuce growth and expansin A5gene expression through microbial volatile organic compound (MVOC) emission. Federation of European Microbiology Societies (FEMS) Microbiology Ecology 76: 342–351.
     Google Scholar
  28. Hoffman M. T., Arnold, A. E., 2010. Diverse bacteria inhabit living hyphae of phylogenetically diverse fungal endophytes. Applied Environmental Microbiology 76: 4063-4075.
     Google Scholar
  29. Frey-Klett, P., Burlinson, P., Deveau, A., Barret, M., Tarkka, M., Sarniguet, A., 2010. Bacterial-fungal interactions: hyphens between agricultural, clinical, environmental, and food microbiologists. Microbiol. Molecular Biology Reviews 75: 583-609.
     Google Scholar
  30. Nelson, D. W. V. A., 2017. Antimicrobials: Novel insights into plant health and biomedical applications. PhD Thesis. University of Ulster, Northern Ireland, U.K.
     Google Scholar
  31. Lievens, B., Rep M., Thomma. P. H. J. B., 2008. Recent developments in the molecular discrimination of formae speciales of Fusarium oxysporum. Pest Management Science 64: 781–788.
     Google Scholar
  32. Doohan F. M., Brennan J. M., Cooke, B. M., 2003. Influ¬ence of climatic factors on Fusarium species pathogenic to cereals. European Journal of Plant Pathology 109: 755–768.
     Google Scholar
  33. Alvindia, D. G., Hirooka. Y., 2015. Identification of Clonostachys and Trichoderma spp. from banana fruit surfaces by cultural, morphological and molecular methods. Mycology 2:109–115.
     Google Scholar
  34. Anon., 2008. Review report for the active substance Trichoderma atroviride (formerly T. harzianum) T-11. Article 4 (1) (b) (iv) and (v) of Directive 91/414/EEC. https://www.pan-europe.info/old/Campaigns/pesticides/documents/loopholes/Directive%2091-414.pdf
     Google Scholar
  35. Alabouvette, C., Olivain, C., Migheli Q., Steinberg. C., 2009. Microbiological control of soil-borne phytopathogenic fungi with special emphasis on wilt-inducing Fusarium oxysporum. New Phytology 184: 529-544.
     Google Scholar
  36. Ndiaye, M., Termorshuizen A. J., van Bruggen, A. H. C., 2010. Effects of compost amendment and the biological control agent Chlonostachys rosea on the development of charcoal rot (Macrophomina phaseolina) on cowpea. Journal of Plant Pathology 92: 173-180.
     Google Scholar
  37. Armstrong, G. M., Armstrong. J. K., 1981. Formae specialis and races of Fusarium oxysporum causing wilt diseases. In: Nelson, P. E., Toussoun T. A., Cook R. J., (eds.). Fusarium Diseases, Biology, and Taxonomy pp. 391-399. Pennsylvania State University Press.
     Google Scholar
  38. Larkin R. P., Fravel, D. R., 2002. Effects of varying environmental conditions on biological control of Fusarium wilt of tomato by non-pathogenic Fusarium spp. Phytopathology 92:1160-1166.
     Google Scholar
  39. Taylor, A., 2018. Technical review on lettuce Fusarium wilt, caused by Fusarium oxysporum f. sp. lactucae. Final Report, SCEPTREplus Project, February 2018, Agriculture and Horticulture Development Board (AHDB), UK https://horticulture.ahdb.org.uk/
     Google Scholar
  40. Taylor, A., Vágány, V., Jackson, A. C., Harrison, R. J., Rainoni, A., Clarkson, J. P., (2016). Identification of pathogenicity‐related genes in Fusarium oxysporum f. sp. cepae. Molecular Plant Pathology 17: 1032-47.
     Google Scholar
  41. Aruga, D., Tsuchiya, N., Matsumura, H., Matsumoto, E., Hayashida, N., 2012. Analysis of RAPD and AFLP markers linked to resistance to Fusarium oxysporum f. sp lactucae race 2 in lettuce (Lactuca sativa L.). Euphytica 187: 1-9.
     Google Scholar
  42. Fujinaga, M., Ogiso, H., Tuchiya, N., Saito, H., Yamanaka, S., Nozue, M., Kojima, M., 2003. Race 3, a new race of Fusarium oxysporum f. sp. lactucae determined by a differential system with commercial cultivars. Journal of General Plant Pathology 69: 23-28.
     Google Scholar
  43. Garibaldi, A., Gilardi, G., Gullino. M. L., 2002. First report of Fusarium oxysporum on lettuce in Europe. Plant Disease 86: 1052.
     Google Scholar
  44. Srinivasan, K., Gilardi, G., Spadaro, D., Gullino, M. L., Garibaldi, A., 2010. Molecular characterization through IGS sequencing of formae speciales of Fusarium oxysporum pathogenic on lamb’s lettuce. Phytopathol. Mediterr. (2010) 49, 309–320.
     Google Scholar
  45. Malek, E. R., Wang, K-H., McSorley, R., 2005. Effect of naturally occurring fungal pathogens from a cut flower production site on four cut flower species, Proceedings Florida State Horticulture Society 118, 306-309.
     Google Scholar
  46. Chinta, Y. D., Kano, K., Widiastuti, A., Fukahori, M., Kawasaki, S., Eguchi, Y., Misu, H., Odani, H., Zhou, S. Y., Narisawa, K., Fujiwara, K., Shinohara, M., Sato, T., 2014. Effect of corn steep liquor on lettuce root rot (Fusarium oxysporum f. sp lactucae) in hydroponic cultures. Journal of Science of Food and Agriculture 94: 2317-23.
     Google Scholar
  47. Sharma, H. S. S., Selby, C., Fleming, C., Rao, J. R., Martin, T., 2014. Plant biostimulants: a review on the processing of macroalgae and use of extracts for crop management to reduce abiotic & biotic stresses. Journal of Applied Phycology 26: 465-490.
     Google Scholar
  48. Sharma, H. S. S., Selby, C., Carmichael, E., McRoberts, C., Rao, J. R., P. Ambrosino, Chiurazzi, M., Pucci, M., Martin, T., 2016. Physicochemical analyses of plant biostimulant formulations and characterisation of commercial products by instrumental techniques. Chemical and Biological Technologies in Agriculture. 3: 1-17.
     Google Scholar