Phosphate Solubilizing Microorganisms for Cereal Production in Adamawa (Cameroon)
Article Main Content
Phosphorus is usually a limiting factor of acidic tropical soil and limited by the low availability and high cost. The present study aimed to evaluate the interaction of Hangloa vivianite (as phosphorus supply), the selected Mycorrhizal fungi strains (M) and Phosphate Solubilizing Microorganisms (PSM) on maize production in the Adamawa Region of Cameroon. An experimental design with 15 combinations of bacteria strains (B), ( BGL12 as B1, SSL9 as B2, BNBL17 as B3, RBNBL5 as B4, and the combinations of these singles strains, namely B1B2, B1B3, B1B4, B2B3, B2B4, B3B4, B1B2B3, B1B2B4, B1B3B4, B2B3B4, B1B2B3B4) and 05 inputs (mycorrhiza (M), Rock Phosphate (RP) and mixture of M with RP (RP+M)), negative control (C-) and positive control (C+)) was used. After four months of growth, nutrients (Phosphorus and Nitrogen) content and grain yield were assessed. Results indicated that total phosphorus content of M, RP and RP+M plants were 2.42, 2.11 and 4.00 fold higher than that of unfertilized plants. M, RP and RP+M increased maize seeds yield by 26.20%, 26.89% and 165.51% relative to negative control. The benefit of the selected PSM with Mycorrhizal fungi strains (246.76% for N; 216.34% for P) and with the Rock Phosphate (314.23% for N; 167.26% for P) was more pronounced with the combination of RP+M (1030.45% for N and 967.31% for P). These results showed that PSM associated with Mycorrhiza can be used as inoculants to improve the efficiency of vivianite as phosphate fertilizer for sustainable maize production under Sudano-Guinean Climate of Adamawa Cameroon region.
References
-
Babana, A. H., Dicko, A. H., Maïga, K. & Traoré, D. 2013. Characterization of rock phosphate solubilizing microorganisms isolated from wheat (Triticum aestivum L.) rhizosphere in Mali. Journal of Mıcrobıology and Mıcrobıal Research 1: pp.1-6.
Google Scholar
1
-
Barea, J.M., Azco´n, R., Azco´n-Aguilar C. 2002. Mycorrhizosphere interactions to improve plant fitness and soil quality. Antonie Van Leeuwenhoek 81:343–351.
Google Scholar
2
-
Cairns, J. E., Hellin, J., Sonder, K. et al., 2013. “Adapting maize production to climate change in sub-Saharan Africa,” Food Security 5: 345–360.
Google Scholar
3
-
Chabot, R. Antoun, H. & Cescas, MP. 1996. Growth promotion of maize and lettuce by phosphate solubilizing Rhizobium leguminosarum biovar. phaseoli. Plant Soil 184:311–321.
Google Scholar
4
-
Devani, M.B., Shishoo, J.C., Shal, S.A. & Suhagia, B.N. 1989. Spectrophotometrical method for micro determination of nitrogen in Kjeldahl digest. Journal Association Off. Analatycal Chemistry 72: 953-956.
Google Scholar
5
-
El-Tarabily, K.A., Nassar, A.H. and Sivasithamparam, K. 2008. Promotion of growth of bean (Phaseolus vulgaris L.) in a calcareous soil by a phosphate-solubilizing, rhizosphere-competent isolate of Micromonospora endolithica. Applied Soil Ecology 39:161–171.
Google Scholar
6
-
Fankem, H., Ngo Nkot, L., Deubel, A., Quinn, J., Merbach, W., Etoa, F.X. & Nwaga, D. 2008. Solubilization of inorganic phosphates and plant growth promotion by strains of Pseudomonas fluorescens isolated from acidic soils of Cameroon. African Journal of Microbiological Research 2: 171–178.
Google Scholar
7
-
Fankem, H., Tchuisseu Tchakounté, G.V., Ngo Nkot, L., Nguesseu Njanjouo, G., Nwaga, D., Etoa, F-X. 2014. Maize (Zea mays) growth promotion by rock-phosphate solubilising bacteria isolated from nutrient deficient soils of Cameroon. African Journal of Microbiology Research 8: 3570-3579.
Google Scholar
8
-
Gouda, S., Kerry, R.G., Das, G., Paramithiotis, S., Shin, H.-S., Patra, J.K. 2018. Revitalization of plant growth promoting rhizobacteria for sustainable development in agriculture. Microbiology Research 206:131–140.
Google Scholar
9
-
Gyaneshwar, P., Naresh, K.G., Parekh, L.J. & Poole, P.S. 2002. Role of soil microorganisms in improving P nutrition of plants. Plant Soil 245: 83–93.
Google Scholar
10
-
Han, H.S., Supanjani, L.K.D., 2006. Effect of co-inoculation with phosphate and potassium solubilizing bacteria on mineral uptake and growth of pepper and cucumber. Plant Soil Environnement 52: 130–136.
Google Scholar
11
-
Jorquera, M.A., Hernandez, M.T., Rengel, Z., Marschner, P. & Mora, M.L. 2008. Isolation of culturable phosphobacteria with both phytate-mineralization and phosphate-solubilization activity from the rhizosphere of plants grown in a volcanic soil. Biology and Fertility of Soils 44: 1025-1034.
Google Scholar
12
-
Khan, M. S., Zaidi, A. & Wani, P. A. 2006. Role of phosphate solubilizing microorganisms in sustainable agriculture-A review. Agronomy Sustainable Developpment 26: 1-15.
Google Scholar
13
-
Koppelaar, R. H. E. M., & Weikard, H. P. 2013. Assessing phosphate rock depletion and phosphorus recycling options. Global Environmental Change 23: 1454–1466. doi:10.1016/j.gloenvcha.2013.09.002.
Google Scholar
14
-
Maimouna, A., 2006. Ecologie des microorganismes du palmier à huile et caractérisation des microorganismes solubilisation le phosphore : Description, Croissance et effets sur les plantes. Mémoire de DEA, Université de Yaoundé I, 36p.
Google Scholar
15
-
Maimouna, A., Megueni C., Dieudonné, N., Fabrice, W., Bernard, A. N. & Tanyi, K. M. 2016. Impact of selecting Phosphate Solubilizing Microorganisms on the growth of maize and sorghum using vivianite as inorganic phosphate supply. International Journal of Current Research 8: 39579-39591.
Google Scholar
16
-
Marschner, P. 2009. The role of rhizosphere microorganisms in relation to P uptake by plants. In: The Ecophysiology of Plant–Phosphorus Interactions, Plant Ecophysilogy. Series (eds P.J. White & J.P. Hammond). Springer, Heidelberg, 165–176.
Google Scholar
17
-
Marschner, P. & Rengel, Z. 2010. The Effects of Plant Breeding on Soil Microbes. Chapter 8. Soil Microbiology and Sustainable Crop Production. DOI 10.1007/978-90-481-9479-7_8.
Google Scholar
18
-
Megueni, C., Awono, E. T., & Ndjouenkeu, R. 2011. Effet simultané de la dilution et de la combinaison du Rhizobium et des mycorhizes sur la production foliaire et les propriétés physico-chimiques des jeunes feuilles de Vigna unguiculata (L.) Walp. In Journal of Applied Biosciences 40: 2668 – 2676.
Google Scholar
19
-
Mohamed, H. 2012. Nouvelle Alerte environnementale : épuisement du phosphore.2p.
Google Scholar
20
-
Murphy, J. & Riley, J.P. 1962. A modified single solution method for the determination of phosphate in natural waters. Analytica Chimica Acta 27: 31-36.
Google Scholar
21
-
Ngakou, A., Tamò, M., Parh, I.A., Nwaga, D., Ntonifor, N.N. and Nebane, C.L. 2008. Management of cowpea flower thrips Megalurothrips sjostedti (Thysanoptera, Thripidae) in Cameroon. Crop Protection 27: 481-488.
Google Scholar
22
-
Nwaga, D., Hamon, S., Djieto, L C. & Engelmann, F. 2007. Biotechnologies et maîtrise des intrants agricoles en Afrique centrale. Réseau ‘BIOVEG’, AUF/IRD/Université de Yaoundé I/IRAD, Yaoundé, Cameroon. http://www. bioveg.auf.org.
Google Scholar
23
-
Nwaga, D., Jansa, J., Abossolo Angue, M. et al., 2010. The potential of soil beneficial microorganisms for slash-and-burn agriculture in the humid forest zone of Sub Saharan Africa. Chap 5 In Soil Biology and Agriculture in the Tropics, P Dion (ed), SpringerVerlag, Berlin, Heidelberg, pp 81-107.
Google Scholar
24
-
Osorio, Vega, N.W. 2007. A review on beneficial effects of rhizosphere bacteria on soil nutrient availability and plant nutrient uptake. Revista Facultad Nacional de Agronomía, Medellín 60: 3621–3643.
Google Scholar
25
-
Ramatou, L. A. 2016. Résistance des microorganismes solubilisant le phosphore aux stress environnementaux et leur effet sur la croissance du maïs dans la Région de l’Adamaoua. Mémoire de Master. 57p.
Google Scholar
26
-
Richardson, A. E. 2001. Prospects for using soil microorganisms to improve the acquisition of phosphorus by plants. Australian Journal of Plant Physiology 28: 897-906.
Google Scholar
27
-
Sadeghzadeh B. A review of zinc nutrition and plant breeding. J. Soil Sci. Plant Nutr. 2013;13:905–927.
Google Scholar
28
-
Setiawati, A. & Handayanto, E. 2010. Role of phosphate Solubilizing bacteria on availability phosphorus in Oxisols and tracing of phosphate in corn by using 32P. In: 19th World Congress of Soil Science, Soil Solutions for a Changing World : Brisbane, Australia. 4p.
Google Scholar
29
-
Singh, H.P. 1990. Response of dual inoculation with Bradyrhizobium and VAM mycorrhiza or phosphate solubilizer on soybean in mollisol. In: Jalali BL, Chand H (eds) Trends in mycorrhizae. Research proceedings of the national conference on mycorrhiza. Hisar, India, pp 14–16.
Google Scholar
30
-
Smith, S.E. & Read, D.J. 2008. The mycorrhizal symbiosis. San Diego, USA: Academic Press.
Google Scholar
31
-
United State Department of Agricultural. 2017. Available at: https://www.
Google Scholar
32
-
Vasconcellos, C. A., Pitta, G. V. E., Franca, G. E., and de Alves, V. M. C. 2000. Soloe Fertilizantes com fósforo. Revista Cultivar 13: 30-32.
Google Scholar
33
-
Wassouni, F. 2014. Caractérisation des microorganismes solubilisant le phosphore dans les sols de la Région de l’Adamaoua Cameroun et évaluer l’effet de leur inoculation sur la production de Zea mays et Sorghum bicolor L. Moench. Mémoire de Master, 73p.
Google Scholar
34
-
Yaya, F., Nguetnkam, J.P., Tchameni, R., Basga, S.D. & Penaye, J. 2015. Assessment of the fertilizing effect of Vivianite on the growth and yield of the Bean ‘‘Phaseolus vulgaris’’ on Oxisoils from Ngaoundere (Central North Cameroon). International Research Journal of Earth Sciences, 3: 18-26.
Google Scholar
35
-
Zapata, F. & Roy, R.N. 2004. Use of Phosphate Rock for Sustainable Agriculture. FAO and IAEA, Rome, Italy.
Google Scholar
36
Most read articles by the same author(s)
-
G. Nowo Nekou,
A.-M. Sontsa-Donhoung,
. Hawaou,
M. Bahdjolbe,
R. Tobolbaï,
D. Nwaga,
Response of the Leek (Allium porrum)-Mycorrhizal Fungus Symbiosis to Cutting Levels, Light Exposure and Seedling Density , European Journal of Biology and Biotechnology: Vol. 2 No. 3 (2021)