Nigerian Defence Academy, Nigeria
Nigerian Defence Academy, Nigeria
* Corresponding author
Nigerian Defence Academy, Nigeria
Nigerian Defence Academy, Nigeria
Nigerian Defence Academy, Nigeria

Article Main Content

The operations of Kaduna Refinery and Petrochemical Company (KRPC) lead to the generation of effluents. Plants growing in the drain are in constant exposure to these effluents. Mariscus longibrateatus, which is the most abundant plant species growing in the drain, was studied to determine the effects of the effluents on the plant. Plant samples and soil on which the plant grows, were analyzed for heavy metals. Manganese (1.30mg/g) and copper (1.30mg/g) had the highest concentration of heavy metals in the roots. The plant samples had thinner leaves than the control plant, which may be attributed to dehydration and some hidden injuries. The leaf whole vascular bundle of the studied plants ranged from 19085–20790µm2 whereas phloem and xylem area ranged from 3995 – 4290µm2 and 6584-7004µm2 respectively. Transfer and bioaccumulation factors revealed that heavy metals were not effectively transferred from the root to the stem, but the plant was able to survive in the drain containing KRPC effluents. It is concluded that the effluents caused some changes in the plant. It can be inferred that Mariscus longibrateatus are tolerant to the toxicants in the effluents, and therefore, this plant species is recommended for bioremediation study because of its tolerant ability to heavy metals.

References

  1. Achudume, A. C. (2009). The Effect of Petrochemical Effluent on the Water Quality of Ubeji Creek in Niger Delta Region. Bulletin of Environmental Toxicology, 83, 410 – 415.
     Google Scholar
  2. Adeniyi, A. & Afolabi, J. (2002). Determination of total petroleum hydrocarbons and heavy metals in soils within the vicinity of facilities handling refined petroleum. Environ. Int., 2, 79 – 82.
     Google Scholar
  3. Anoliefo, G. O. & Edegbai, B. O. (2000). Effect of spent engine oil as a soil contaminant on the growth of two eggplant species Solanum melongena (L) and S. incanum (L). J. Agric. For. Fish, 1, 21-25.
     Google Scholar
  4. Anoliefo, G.O., D.E. Vwioko & P. Mpamah. (2003). Regeneration of Chromolaenaodorata in crude oil polluted soil: A possible phytoremediating agent. Benin Science Digest, 1, 9-14.
     Google Scholar
  5. APHA. (1998). Standard methods for the examination of water and wastewater. American Public Health Association, American Water Works Association and Water Environment Federation (APHA-AWWA-WEF), Published by the American Public Health Association, Washington D.C. (20th ed).
     Google Scholar
  6. Beauford W, Barber J. & Barringer A.R. (1977). The uptake and distribution of mercury chloride (HgC1 2) within higher plants (Pisum sativum). Physiol Plant, 39, 261-270. doi:10.1111/j.1399-3054.tb01880.x
     Google Scholar
  7. Beg, M.U., Saeed, T., Al-Muzaini, S., Beg, K.R. & Al-Bahloul, M. (2003). Distribution of petroleum hydrocarbon in sediment from coastal area receiving industrial effluents in Kuwait. Ecotoxicology and Environmental Safety, 54, 47–55.
     Google Scholar
  8. Chapman, D. (1996). Water Quality Assessments: A Guide to the Use of Biota, sediments and water in environmental monitoring. (2nd edition, Pp. 636)
     Google Scholar
  9. Cholewa E & Griffith M. (2004). The unusual vascular structure of the corm of Eriophoramvaginatum: Implications for efficient retranslocation of nutrients. Journal of Experimental Botany. 55, 731-741
     Google Scholar
  10. Edema, E.N., Okoloko, G.E. & Agbogidi, O.M. (2008). Physical Ionic characteristics in water soluble fraction (WSF) of Olomoro well-head crude oil before and after exposure to Azolla Africana Dev. African Journal of Biotechnology, 7, 035-040
     Google Scholar
  11. Edema, N.E. (2009). Total salinity of the water-soluble fraction (WSF) of Ogini well-head crude oil before and after exposure to Azolla Africana Devs. Nigerian Journal ofBotany, 22(2), 239-246
     Google Scholar
  12. Fayiga, A. Q & Ma, L. Q. (2006). Using Phosphate rock to immobilize metals in soil and increase arsenic uptake in Pteris vittata. Sci Total Environ. 359, 17-25.
     Google Scholar
  13. Fisher, N.S., Jones, G.J.and Nelson, D.M. (1981). Effect of copper and zinc on growth, morphology and metabolism of Asterionella japonica (Cleve). J.Exp. Biol. Ecol, 51, 37-56.
     Google Scholar
  14. Gabara, B.; Sklodowska, M.; Wyrwicka, A., Glinska, S. & Gapinska, M. (2003). Changes in the ultrastructure of chloroplasts and mitochondria and antioxidant enzime activity in Lycopersicon esculentumMill. leaves sprayed with acid rain. Plant Science, 164, 507-516.
     Google Scholar
  15. Gielwanowska. I, Szczuka. E, Bednara. J. & Gorecki. R. (2005). Anatomical features and ultrastructure of Deschampsia antarctica(Poaceae) leaves from different growing habitats. Ann. Bot. 96, 1109-1119.
     Google Scholar
  16. Hara, S. (2000). Alteraçõesestruturaisemfolhas de Panicum maximum Jacq. submetidas à chuvasimulada com flúor. [M.Sc. Thesis]. Universidade Federal de Viçosa, Viçosa, Brasil.
     Google Scholar
  17. Harison, R. M. (1992). Understanding out Environmental Chemistry and Pollution. Cambridge University press (2nd ed., Pp. 46-49).
     Google Scholar
  18. He, W.M & Zhang, X.S. (2003). Responses of an evergreen shrub Sabina vulgaris to soil water and nutrient shortages in the semi-arid Mu Us Sandland in China. J Arid Environ. 53, 307-316.
     Google Scholar
  19. Imevbore A.A.A & Adeyemi S.A. (1981). Environmental monitoring in relation to pollution and control of oil pollution. Proc. Sem. Petr. Ind. Nig. Environ., 6, 135-142.
     Google Scholar
  20. Jahan. S & Zafar. I. (1992). Morphological and anatomical studies o leaves of different plants affected by motor vehicles exhaust. J. Islamic Acad. Sci., 5, 21-23.
     Google Scholar
  21. Logendra S, Gleba Y.Y & Raskin I. (1999). Use of plant root for phytoremediation and molecular farming. Proc. Nat. Acad. Sci. USA. 96, 5973-5977
     Google Scholar
  22. Makbul. S, Coskuncelebi. K, Turkmen. Y, Beyazoglu. O. (2006). Morphology and anatomy of ScrophulariaL. (Scrophulariaceae) taxa from NE Anatolia. Acta Biol. Cracov. 48, 33-43.
     Google Scholar
  23. McNeely, R. N., Neimanis. V. P & Dwyer, L. (1979). Water Quality Sourcebook (A Guide to Water Quality Parameters). Inland waters Directorate Ottawa, Canada, (Pp. 32-70).
     Google Scholar
  24. Momba N. B. & Kamika I. (2003). Assessing the Resistance and Bioremediation Ability of Selected Bacterial and Protozoan Species to Heavy Metals. In Metal-Rich Industrial Wastewater. Bio. Med. Central Microbiology. 1-14.
     Google Scholar
  25. Ogle. K. (2003). Implications of interveinal distance for quantum yield in C4 grasses: a modeling and meta-analysis. Oecologia. 136, 532-542
     Google Scholar
  26. Onwumere, B.G. & Oladimeji, A.A. (1990). Accumulation of metals and histopathology in Oreochromis niloticus exposed to treated NNPC Kaduna (Nigeria) petroleum refinery effluent. Ecotoxicology and Environmental Safety, 19, 123–134.
     Google Scholar
  27. Osibanjo, O. & Adie, G.U. (2011). Impact of Effluents from Bodija Abbatioron Physicochemical Parameter of Osunkaye Stream Ibadan City, Nigeria. Afr. J. Biotechnol., 6(15), 1806-1811.
     Google Scholar
  28. Prasad M.N.V. (1995). Cadmium toxicity and tolerance in vascular plants. Environ.Expt. Bot., 35, 525-545.
     Google Scholar
  29. Prasad, M.N.V & Freitas, H.M.O. (2003). Metal hyperaccumulation in plants: Biodiversity prospecting for phytoremediation technology. Elect. J. Biotech., 6, 317-345.
     Google Scholar
  30. Premlata. (2009). Multivariant analysis of drinking water quality parameters of lake Pichhola in Udaipur, India. Biological Forum- An International`Journal, 1(2), 97-102.
     Google Scholar
  31. Rana, S.V.S. (2005). Essentials of Ecology and Environmental Science. 2nd Edition. Practice Hall of India Private Limited. New Delhi, pp. 488.
     Google Scholar
  32. Reig-Armiñana, J., Calatayud, V., Cerveró, J., GarcíaBreijo, F. J., Ibars, A. & Sanz, M. J. (2004). Effects of ozone on the foliar histology of the mastic plant (Pistacia lentiscusL.). Environmental Pollution, 132, 321-331.
     Google Scholar
  33. Rosenberg E. (2008). The Hydrocarbon Oxidizing Bacteria in: The biology of bacteria. A Balows (ed), Springer Verlag. Heidelberg, Germany.
     Google Scholar
  34. Silva, L. C.; Oliva, M. A.; Azevedo, A. A, Araújo, J. M. & Aguiar, R. (2005). Micromorphological and anatomical alterations caused by simulated acid rain in Restinga plants: Eugenia unifloraand Clusiahilariana. Water, Air and Soil Pollution, 168, 129-143.
     Google Scholar
  35. Singh NP, Mccoy MT, Tice RR & Schneider EL. (1988). A simple technique for quantification of low levels of DNA damage in individual cells. Exp Cell Res., 175, 184-191
     Google Scholar
  36. Steudle. E & Frensch. J. (1996). Water transport in plants: role of the apoplast. Plant and Soil, 187, 67-79.
     Google Scholar
  37. Szabo, Z K. Papp, M & Daroczi, L. (2006). Anatomy and morphology of five Poa species. Acta Biol. Cracov. 48, 83-88.
     Google Scholar
  38. Thompson, J.D., Higgins, D.G. & Gibson, T.J. (1994). CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res., 22, 4673-80
     Google Scholar
  39. Uaboi-Egbenni PO, Okolie PN, Adejuyitan OE, Sobande AO & Akinyemi O. (2009). Effect of industrial effluents on the growth and anatomical structures of Abelmoschus esculentus(okra). Afr. J. Biotechnol., 8, 3251 -3260.
     Google Scholar
  40. Ubwa, S. T., Atoo, G. H., Offem, J. O., Abah, J & Asemave, K. (2013). An assessment of surface water pollution status around Gboko abattoir. African Journal of Pure and Applied Chemistry, 7(3), 131-138.
     Google Scholar
  41. Usman D.H., Ibrahim A.M. & Abdullahi S. (2012). Potentials of Bacterial Isolates in Bioremediation of Petroleum Refinery Wastewater. Journal of Applied Phytotechnology in Environmental Sanitation, 1(3), 131-138.
     Google Scholar
  42. Uzoekwe S. A & Oghosanine F. A. (2011). The Effect of Refinery and Petrochemical Effluent on Water Quality of Ubeji Creek, Warri, Southern Nigeria. Ethiopian J. Environ Stud. and Management, 4(2), 107-108.
     Google Scholar
  43. Vivan EL. Adamu CI & Ayuba KN. (2012). Effects of effluent discharge of Kaduna refinery on the water quality of river Romi. Journal of Research in Environmental Science and Toxicology, 1(3), 41-46
     Google Scholar
  44. Vwioko D.E, Anoliefo G.O & Fashemi S.D. (2006). Metal concentration in plant tissues of Ricinus communis L. (castor oil) grown in soil contaminated with spent lubricating oil. J Appl Sci Environ Management, 10(3),127–134
     Google Scholar
  45. Yang X, Feng Y, He Z, Stoffella P.J. (2005). Molecular mechanisms of heavy metal hyperaccumulation and phytoremediation. J. Trace Elem. Med. Biol., 18, 339-353.
     Google Scholar
  46. Zhang, Z.X & Bharat K.C.P. (2007). Bacillus decisifrondis sp. nov., isolated from soil underlying decaying leaf foliage. International Journal of Systematic and Evolutionary Microbiology, 57, 974–978.
     Google Scholar


Most read articles by the same author(s)